

The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance

INL/EXT-13-28278

Newton-Krylov Based P2
Projection Solver for
Fluid Flows

Robert Nourgaliev
Mark Christon
Jozsef Bakosi
Anh Bui

June 2013

INL/EXT-13-28278

Newton-Krylov Based P2 Projection Solver for Fluid
Flows

Robert Nourgaliev
Mark Christon
Jozsef Bakosi

Anh Bui

June 2013

Idaho National Laboratory
Nuclear Science & Technology

Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

This Page is Intentionally Left Blank

I

Newton-Krylov based P2 Projection Solver for Fluid
Flows

ROBERT NOURGALIEV� , MARK CHRISTON�� , JOZSEF BAKOSI�� , ANH BUI�

�Nuclear Science & Technology

Idaho National Laboratory

P.O. Box 1625, Idaho Falls, ID 83415-3840, USA

��Computational Physics Group

Computer, Computational and Statistical Sciences Division

Los Alamos National Laboratory

Los Alamos, NM 87545, USA

INL/EXT-13-28278 (100 p.)

June 17, 2013

This Page is Intentionally Left Blank

Abstract

T
HE purpose of the present document is to formulate Jacobian-free Newton-

Krylov algorithm for approximate projection method used in Hydra-TH code.

Hydra-TH is developed by Los Alamos National Laboratory (LANL) under the

auspices of the Consortium for Advanced Simulation of Light-Water Reactors

(CASL) for thermal-hydraulics applications ranging from grid-to-rod fretting

(GTRF) to multiphase flow subcooled boiling. Currently, Hydra-TH is based on

the semi-implicit projection method, which provides an excellent platform for

simulation of transient single-phase thermalhydraulics problems. This algorithm

however is not efficient when applied for very slow or steady-state problems,

as well as for highly non-linear multiphase problems relevant to nuclear reac-

tor thermalhydraulics with boiling and condensation. These applications require

fully-implicit tightly-coupling algorithms. The major technical contribution of the

present report is the formulation of fully-implicit projection algorithm which will

fulfill this purpose. This includes the definition of non-linear residuals used for

GMRES-based linear iterations, as well as physics-based preconditioning tech-

niques.

iii

This Page is Intentionally Left Blank

Acknowledgements

T
HIS work has been authored by Battelle Energy Alliance, LLC under contract

No. DE-AC07-05ID14517 (INL/EXT-13-28278) with the U.S. Department of

Energy. The United States Government retains a non-exclusive, paid-up, irrevoca-

ble, world-wide license to publish or reproduce the published form of this manual,

or allow others to do so, for United States Government purposes.

v

This Page is Intentionally Left Blank

Contents

Abstract iii

Acknowledgements v

Contents vii

1 Introduction 1

2 Hydra-TH 3

3 Governing Equations 5

3.1 Mass conservation . 5

3.2 Momentum conservation . 6

3.3 Energy conservation . 6

3.4 Scalar transport and turbulence . 7

4 Semi-Implicit Projection 9

5 Fully-Implicit Projection 13

5.1 Incompressible, isothermal, laminar flow 13

5.1.1 On interpretation of Lagrange multiplier 14

5.1.2 Incremental forms . 16

5.1.3 Implicit treatment of advection operator 19

5.1.4 Relevance to semi-implicit projection 21

5.1.5 Picard Iterations . 23

5.1.6 Interpretation with the generalized block LU decomposition . . . 25

5.2 Adding thermal and turbulent effects . 28

5.2.1 Relevance to semi-implicit projection 34

5.2.2 Picard Iterations . 35

vii

VIII CONTENTS

6 Preconditioning 39

6.1 General strategy . 39

6.2 Semi-Implicit Projection as Physics-Based Preconditioning 40

7 Numerical Examples 45

7.1 Vortex shedding behind a cylinder . 45

7.1.1 Time convergence . 45

7.1.2 Non-linear iteration convergence 58

7.1.3 Comparison to SIMPLE and PISO (OpenFoam) 62

7.2 Natural Convection in a Square Cavity with Oscillatory Temperature Bound-

ary Conditions . 70

8 Concluding Remarks 83

APPENDICES 86

A Extension to Compressible Flows 87

B Cartesian Vector Calculus 91

Bibliography 98

Index 100

This Page is Intentionally Left Blank

List of Tables

7.1 Performance of the algorithms, for vortex shedding problem 66

x

List of Figures

7.1 Computational mesh for vortex shedding test: 20,612 nodes and 10,080

HEX8 elements. 46

7.2 Convergence of velocity field for semi-implicit projection algorithm with

P (1) pressure form and θp = 1. 48

7.3 Convergence of velocity field for semi-implicit projection algorithm with

P (2) pressure form and θp = 1. 49

7.4 Convergence of velocity field for fully-implicit projection algorithm with

P (1) pressure form and θp =
1
2 . 50

7.5 Convergence of velocity field for fully-implicit projection algorithm with

P (1) pressure form and θp = 1. 50

7.6 Convergence of velocity field for fully-implicit projection algorithm with

P (2) pressure form and θp = 1. 51

7.7 Convergence of the velocity field for fully-implicit projection algorithm

with P (0) pressure form (Chorin method) and θp = 1/2. 52

7.8 Comparison of velocity fields for fully-implicit projections P (0) (Chorin)

and P (1), for different CFL numbers. For P (0), with used θ = 1/2, while

for P (1) – θ = 1. 53

7.9 Comparison of semi-implicit (SI, θp = 1, P (1)) and fully-implicit pro-

jection (FI, θp =
1
2 , P (1)), on the example of vortex shedding behind a

cylinder. Velocity field for Re = 100. 54

7.10 Comparison of the predictor-corrector (PC) and semi-implicit (SI) projec-

tion algorithms, both with θp = 1, P (1)). Velocity field for Re = 100. . . 55

7.11 A snapshot of CFL distribution for for simulation with fully-implicit pro-

jection (θp = 1, P (1)), for the case with maximum CFL≈ 30. 56

7.12 A snapshot of CFL distribution for for simulation with fully-implicit pro-

jection (θp = 1, P (1)), for the case with maximum CFL≈ 60. 57

7.13 Convergence of non-linear iterations for different CFL numbers (last 40

non-linear iterations of the transient). 59

xi

XII LIST OF FIGURES

7.14 Convergence of non-linear iterations for different CFL numbers. Com-

parison of local (per time step) and global iteration counts. 59

7.15 Convergence of non-linear iterations for different CFL numbers (last 3

time steps of the transient t = 0, .., 500). The non-linear iteration count

per time step is shown in shadowed boxes. Tolerance is set to 10−8. . . . 60

7.16 Convergence of non-linear iterations for CFL=7 (last 3 time steps of the

transient t = 0, .., 500). The non-linear iteration count per time step is

shown in shadowed boxes. Tolerance is set to 10−12. 61

7.17 Convergence of velocity field for PISO algorithm. 63

7.18 Comparison of velocity fields for SIMPLE vs. PISO solution, for different

CFL numbers. 64

7.19 Comparison of velocity fields for fully-implicit projection vs. PISO solu-

tion, for different CFL numbers. 65

7.20 Comparison of the convergence of non-linear iterations – Hydra-TH’s Pi-

card algorithm vs. OpenFoam’s PISO algorithm. Last 3 time steps of the

transient t = 0, .., 500. The non-linear iteration count per time step is

shown in shadowed boxes. 67

7.21 Comparison of the linear convergence rates for non-linear iterations –

Hydra-TH’s Picard algorithm vs. OpenFoam’s PISO algorithm. Last 3

time steps of the transient t = 0, .., 500. The non-linear iteration count

per time step is shown in shadowed boxes. 68

7.22 Steady-state solution. Ra = 104, Pr = 0.71. Temperature field (color

map and solid isolines) and contours of vorticity (dashed isolines). 70

7.23 On the formulation of the oscillating-temperature natural convection test. 71

7.24 Dynamics of temperature (color-map and thick solid isolines) and vortic-

ity magnitude (thin dashed isolines), using the semi-implicit projection

(pressure gradient form, P (1), θp =
1
2), with time step Δt = 1. 73

7.25 Dynamics of temperature (color-map and thick solid isolines) and vor-

ticity magnitude (thin dashed isolines), using the fully-implicit (Picard-

based, pressure curvature form, P (2) θp =
1
2) projection, with time step

Δt = 1. 74

7.26 Time convergence for vorticity field, comparing semi-implicit (pressure

gradient form, P (1), θp =
1
2) and fully-implicit algorithms (pressure cur-

vature forms, P (2), θp =
3
5), for time t = 10. 75

7.27 Time convergence of L2-norm of errors for kinetic energy. 76

7.28 Time convergence of L2-norm of errors for pressure. 77

7.29 Time convergence of L2-norm of errors for Lagrange multiplier. 78

7.30 Time convergence of L2-norm of errors for temperature. 79

LIST OF FIGURES XIII

7.31 Time convergence for vorticity field, comparing predictor-corrector (PC)

and fully-implicit algorithms (both with pressure curvature forms, P (2),

θp =
3
5), for time t = 10. 81

7.32 Convergence of non-linear iterations for the case of fully-implicit algo-

rithm with P (1), θp =
1
2 , with time steps Δt = 2× 5. 82

7.33 Convergence order and rate of non-linear iterations. 82

Chapter 1

Introduction

T
HE solution of the time-dependent incompressible single- and multiphase flows

poses several algorithmic problems due to the div-free constraint, and the con-

comitant spatial and temporal resolution required to perform time-accurate solu-

tions particularly when complex geometry is involved. The initial deployment

of Hydra-TH has focused on projection methods because of their computational

efficiency and accuracy for transient flows. However, when applied to slow tran-

sients and steady-state problems, the currently existing projection methods are not

cost-effective, due to stability restrictions imposed by material Courant limit. For

these applications, fully-implicit algorithms are required. Here, we reformulate

semi-implicit projection method to fit into the fully-implicit Jacobian-free New-

ton Krylov solution strategy.

We start with a short description of governing equations, defined in Chapter

3. Even though we limit our discussion here to single-phase flows, the basic ideas

introduced are extendable to multi-fluid formulation [NC12].

A detailed review of projection methods is beyond the scope of this document,

but a partial list of relevant work is provided for the interested reader. Projec-

tion methods, also commonly referred to as fractional-step, pressure correction

methods, or Chorin’s method [Cho68] have grown in popularity over the past

20 years due to the relative ease of implementation and computational perfor-

mance. This is reflected by the volume of work published on the development

of second-order accurate projection methods, see for example van Kan [Kan86],

Bell, et al. [BCG89], Gresho, et al. [Gre90, GC90, GCCH95, GC96], Almgren,

et al. [ABCH93, ABS96, ABC00], Rider [Rid94b, Rid94a, RKM+95, Rid95],

1

2 CHAPTER 1. INTRODUCTION

Minion [Min96], Guermond and Quartapelle [GQ97], Puckett, et al. [PAB+97],

Sussman, et al. [SAB+99], and Knio, et al. [KNW99]. The numerical perfor-

mance of projection methods has been considered by Brown and Minion [BM95,

MB97], Wetton [Wet98], Guermond [Gue96, Gue97], Guermond and Quartapelle

[GQ98b, GQ98a], and Almgren et al. [ABC00]. A short introduction to semi-

implicit projection method is given in Chapter 4.

The main technical contribution of this report is described in chapters 5 and 6,

introducing fully-implicit projection and its physics-based preconditioning.

Concluding remarks are given in the final chapter 8.

Chapter 2

Hydra-TH

H
YDRA-TH [Chr11] refers to the specific physics module that provides the hy-

brid finite-volume/finite-element incompressible/low-Mach flow solver. This

is built as one of the many physics modules using the Hydra multiphysics toolkit.

The toolkit provides a rich suite of components that permits rapid application

development, I/O interfaces to permit reading/writing multiple file formats for

meshes, plot data, time-history and surface-based output. The toolkit also pro-

vides run-time parallel domain decomposition with data-migration for both static

and dynamic load-balancing. Linear algebra is handled through an abstract in-

terface that permits use of popular libraries such as PetSC and Trilinos. Hy-

dra’s toolkit model for development provides lightweight, high-performance and

reusable code components for agile development. Currently the toolkit supports

finite-element based solvers for time-dependent heat conduction, time-dependent

advection-diffusion, time-dependent incompressible flow, multiple Lagrangian hy-

drodynamics solvers, rigid-body dynamics, etc. In addition, unstructured-grid

finite-volume solvers are available for solving time-dependent advection-diffusion,

Burgers’ equation, the compressible Euler equations, and incompressible/low-

Mach Navier-Stokes equations. There are also interfaces to the FronTier front-

tracking software and to level-set methods.

3

This Page is Intentionally Left Blank

Chapter 3

Governing Equations

I
N the current chapter, we formulate governing fluid dynamics equations consid-

ered in the following chapters. We discuss both incompressible and (weakly1)

compressible formulations.

3.1 Mass conservation

The mass conservation principle in divergence form is

∂ρ

∂t
+∇ · (ρv) = 0. (3.1)

Incompressible. In the incompressible limit, the velocity field is solenoidal,

∇ · v = 0 (3.2)

while density can be either constant, or variable – a function of some material

index function χ2 (in multiphase flow configurations), ρ (χ). This implies a mass

density transport equation,

∂ρ

∂t
+ vj

∂ρ

∂xj
= 0. (3.3)

Compressible. We are considering two compressible flow configurations:

1Projection algorithms are generally considered inadequate for strong (shock-wave

dynamics) compressible flows.
2The index function χ could be either the level set function (for the LS method

[Set99]), or the volume fraction (for the VOF method [HN81]).

5

6 CHAPTER 3. GOVERNING EQUATIONS

1. Acoustically-filtered, ρ (T). In this case, the velocity field can still be

divergence-free, eq.(3.2), which allows to eliminate sound waves from con-

sideration and simplify numerical treatment.

2. Fully-compressible, ρ (P, T), in which case the energy equation is tightly

coupled to both mass and momentum conservation.

3.2 Momentum conservation

The conservation of linear momentum is

ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

=
∂σij
∂xj

+ ρfi (3.4)

where vi are components of the velocity vector v, σij is the stress tensor, ρ is the

mass density, and fi is the body force. The body force contribution ρfi typically

accounts for buoyancy forces with fi representing the acceleration due to gravity.

The stress may be written in terms of the fluid pressure and the deviatoric

stress tensor as

σij = −pδij + τij (3.5)

where p is the pressure, δij is the Kronecker delta, and τij is the deviatoric stress

tensor. A constitutive equation relates the deviatoric stress and the strain rate, e.g.,

τij = 2μSij. (3.6)

The strain-rate tensor is written in terms of the velocity gradients as

Sij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (3.7)

3.3 Energy conservation

The energy equation may be expressed in terms of temperature, T, as

∂ρCpT

∂t
+

∂

∂xj

(
ρvjCpT

)
=
∂qj
∂xj

+ q
′′′

(3.8)

3.4. SCALAR TRANSPORT AND TURBULENCE 7

where Cp is the specific heat at constant pressure, qi is the diffusional heat flux

rate, and q
′′′

represents volumetric heat sources and sinks, e.g., due to exother-

mic/endothermic chemical reactions. Fourier’s law relates the heat flux rate to the

temperature gradient and thermal conductivity

qi = κ
∂T

∂xi
(3.9)

where κ is the thermal conductivity.

Alternatively, one can solve in terms of specific internal energy:

∂ρu

∂t
+

∂

∂xj

(
ρvju
)
=
∂qj
∂xj

+ q
′′′

+ Φ− p
∂vj
∂xj

(3.10)

with a given function

u = F (T)

For example,

u (T) = u0 + Cv (T − T0)

where u0 and T0 are the values of specific internal energy and temperature at some

reference point, while Cv is specific heat. Φ represents viscous heating, which we

will ignore, as well as the last term in eq.(3.10), as the flow of interest is incom-

pressible.

3.4 Scalar transport and turbulence

In addition, we consider a coupled solution for transport of scalars:

∂ρφn

∂t
+

∂

∂xj

(
ρvjφn

)
=
∂Jnj

∂xj
+ J

′′′

n
(3.11)

where by J
nj

and J
′′′

n
we denote diffusive flux and volumetric sources for a scalar

φn . Note that φn could represent turbulent transport quantities (e.g., turbulent

viscosity μt , or turbulent kinetic energy k and energy dissipation rate ε). In this

case, momentum and heat diffusion coefficients are considered to be a function of

φn . In the most general case,

μ
(
T, φn

)
and κ

(
T, φn

)
, n = 0, ..., N − 1

8 CHAPTER 3. GOVERNING EQUATIONS

As an example, we will consider Spalart-Allmaras turbulence model [SA92].

In this case, N = 1, φ0 = μt and:

J0j
=
μm + μt

σ

∂μt

∂x
j

(3.12)

and

J
′′′

0
= C

b1
Saμt −

C
w1fw

ρ

(μt

d

)2
+
C

b2

ρσ

∂μt

∂x
j

∂μt

∂x
j

(3.13)

where the damping functions and the rest of the coefficients are defined as:

fw = g

[
1 + C3

w3

g6 + C3
w3

]1/6
, g = r + C

w2

(
r6 − r

)
, r =

μt

ρSaψ
2d2

(3.14)

S
a
= S

r
+

μt

ρψ2d2
f
v2
, S

r
=
√
2RijRij , Rij =

1

2

(
∂vi
∂x

j

−
∂vj
∂x

i

)
(3.15)

f
v1
=

χ3

χ3 + C3
v1

, f
v2

= 1−
χ

1− χf
v1

, χ =
μt

μm

(3.16)

and C
b1
= 0.1355, C

b2
= 0.622, σ = 2/3, ψ = 0.41, C

w1 =, C
v1 = 7.1, C

v2 = 5,

C
w1 =

(
C

b1

ψ2 +
1+C

b2

σ

)
, C

w2 = 0.3 and C
w3 = 2.

Here, d is the normal diatance from the wall, while μm (T) is molecular dy-

namic viscosity, which is in general is a function of temperature. The effective

eddy viscosity and thermal conductivity are defined as

μ (μt, T) = μm (T) + μtfv1 and κ (μt, T) = κm (T) +
μt

Pr
t

(3.17)

Chapter 4

Semi-Implicit Projection

F
OR simplicity, we consider here only incompressible, constant-density, isother-

mal, laminar flow formulation.

Following the well-established finite-volume procedure, we discretize mo-

mentum equation in space, integrate by parts, and apply the divergence theorem.

Using a piecewise-constant weight functions yields

ρ
d

dt

∫
Ωe

v dΩe +

∮
Γe

ρv(v · n) dΓe −

∮
Γe

τ · n dΓe +

∫
Ωe

∇p dΩe −

∫
Ωe

f dΩe(4.1)

Using definition for the cell-average,

u =
1

Ωe

∫
Ωe

uh (4.2)

the spatially-discrete momentum equations become

ρΩe dv

dt
+

∮
Γe

ρv(v · n) dΓe −

∮
Γe

τ · n dΓe +

∫
Ωe

∇p dΩe −

∫
Ωe

f dΩe (4.3)

The projection algorithm can be derived a number of ways. Here, we choose to

first develop the time-integrator, and identify the terms associated with the projec-

tion via a Helmholtz decomposition of the velocity. Before proceeding we define

9

10 CHAPTER 4. SEMI-IMPLICIT PROJECTION

the following mass, advective, viscous, gradient and body-force operators.

M = ρΩe (4.4)

A(ρ,v)v =

∮
Γe

ρv(v · n) dΓe (4.5)

Kv =

∮
Γe

τ · n dΓe (4.6)

Bp̄ =

∫
Ωe

∇p dΩe (4.7)

F =

∫
Ωe

f dΩe (4.8)

We form the global operators, apply forward-Euler first, then backward-Euler

with explicit advection in both cases, and take the sum of the fully-discrete sys-

tems results in the following

M vn+1
−vn

Δt
= (1− θ)Kvn + θKvn+1 + (1− θ)Fn + θFn+1−

−(1− θ)A(ρ,v)vn − θA(ρ,v)vn+1 −Bp̄n − θ
p
B(p̄n+1 − p̄n)

(4.9)

where 0 ≤ θ ≤ 1, θ = 0 corresponds to a forward-Euler, θ = 1/2 a trapezoidal

rule, and θ = 1 backward-Euler treatment of viscous and body-force terms.

Using the Helmholtz decomposition as

ρv∗ = ρvn+1 +∇λ (4.10)

we introduce the following definition

λ = θpΔt(p̄
n+1 − p̄n) (4.11)

Plugging these into Eq. (4.9), the momentum equation can be formulated for

the approximate (“predictor”) velocity as

[M − θΔt (K − A (ρ,v))]v∗ = [M + (1− θ)Δt (K − A (ρ,v))]vn+

+Δt
(
(1− θ)Fn + θFn+1 −Bp̄n

)
+

+
�
�
�
�
�
�
�
���0

θΔtA (ρ,v) ∇λ
ρ

−
�

�
�
�
��� 0

θΔtK ∇λ
ρ

+
�
�
�
�
�
�
���

0[
M ∇λ

ρ
−Bλ

] (4.12)

11

Using the Helmholtz decomposition, and requiring ∇vn+1 = 0, yields a

pressure-Poisson equation (PPE) that can be solved for the Lagrange multiplier

λ:

∇ ·
1

ρ
∇λ = ∇ · v∗ (4.13)

Given a velocity and pressure at time-level n, the P2 algorithm proceeds as

follows.

Algorithm 1 Basic P2 Algorithm

1. Solve for v∗

[M − θΔt (K −A (ρ,v))]v∗ = [M + (1− θ)Δt (K − A (ρ,v))]vn+

+Δt
(
(1− θ)Fn + θFn+1 − Bp̄n

)(4.14)

2. Form the right-hand-side of the PPE, solve for λ,

Kpλ = D (4.15)

3. Update the pressure

p̄n+1 = p̄n +
1

θpΔt
λ (4.16)

Note that testing over the last 20 years or so has indicated that using θ
p
=

1/2 to update the pressure can lead to temporal oscillations in the pressure.

For this reason, we use θp = 1 in the implementation.

4. Project the cell-centered velocities

vn+1 = v∗ −
1

ρ
Bλ (4.17)

5. Compute face gradients and project the face-centered velocities

vf = v∗f −
1

ρf
((B)λ)f · n (4.18)

6. Repeat steps 1 - 5 until the termination time is reached

This Page is Intentionally Left Blank

Chapter 5

Fully-Implicit Projection

I
N the present chapter, we consider non-linear solution strategies for fully-implicit

projection-based algorithms.

5.1 Incompressible, isothermal, laminar flow

For the sake of simplicity, we first consider isothermal, laminar, constant-density

flows. The governing equations are eqs.(3.2) and (3.4). Let’s define the following

vector field, based on Helmholtz decomposition:

v� ≡ v +
1

ρ
∇λ (5.1)

splitting a vector field into solenoidal and irrotational parts. In the following, we

shall call this vector field “HD velocity”.

We will consider three options for defining the vector of unknowns. First, the

vector of primitive variables,

U =

[
p̄
v

]
Second, in terms of Lagrange multiplier:

V =

[
λ
v

]
and third, in terms of HD-velocity and Lagrange multiplier:

W =

[
λ
v�

]

13

14 CHAPTER 5. FULLY-IMPLICIT PROJECTION

5.1.1 On interpretation of Lagrange multiplier

Let us write momentum conservation equation as

∂v

∂t
= −

1

ρ
∇P −∇ · (v ⊗ v) +

1

ρ
∇τ + f (5.2)

and then in the following semi-discrete form:

v�n+1
= vn −Δt1

ρ
∇

(
−
λn

Δt
+ P

n+1
2 −

(
∂λ

∂t

)n+ 1
2

)
︸ ︷︷ ︸

P �

+

+Δt
(
−∇ · (v ⊗ v) + 1

ρ
∇τ + f

)n+ 1
2

(5.3)

where we used eq.(5.1) and P
�

is a discrete pressure representation in the HD-

velocity “predictor” step. Thus,

P
�

= P
n+1

2 −
λn

Δt
−
λn+1 − λn

Δt
(5.4)

Leading to the following discrete definition of the Lagrange multiplier:

λn+1 = Δt
(
P

n+1
2 − P

�
)

(5.5)

From this equation, one can see that the Lagrange multiplier represents a measure

of numerical error in time discretization of pressure gradient of momentum equa-

tion. In order to make a sensible projection algorithm, it is necessary to have this

error, so that the PPE and projection are well defined.

Pressure form: P(0)

The first obvious option is to ignore pressure in the “predictor” step (p̄�), as in the

original Chorin’s method [Cho68, Cho69], leading to

λn+1 � ΔtP
n+1

2
(5.6)

As we show in our numerical experiments (Section 7.2), this form leads to the

first-order accurate solutions, for both pressure and velocity.

5.1. INCOMPRESSIBLE, ISOTHERMAL, LAMINAR FLOW 15

Pressure gradient form: P(1)

In the semi-implicit method described in Chapter 4,

P
n+1

2 = (1− θp)P
n

+ θpP
n+1

+O
(
Δt

1+4θp(1−θp)
)

(Trapezoidal rule)

P
�

= P
n

+O (Δt) (Forward Euler)

(5.7)

leading to

λn+1 = θpΔt
(
P

n+1

− P
n
)

(5.8)

Thus,

P
n+1

= P
n

+
λn+1

θpΔt︸ ︷︷ ︸
(∂P

∂t)
n
Δt+...

(5.9)

and

λn+1 � θpΔt
2

(
∂P

∂t

)n

(5.10)

Therefore, λ is a representation of the second-order truncation errors, and we call

this scheme as “pressure gradient” form.

Pressure curvature form: P(2)

Another usefull form can be created if we add one more time level to the pres-

sure discretization,
{
P

n−1
, P

n

, P
n+1
}

. With this, we can use the second-order

extrapolation for P
�

and trapezoidal rule for P
n+1

2 :

P
n+1

2 = (1− θp)P
n

+ θpP
n+1

+O
(
Δt

1+4θp(1−θp)
)

(Trapezoidal rule)

P
�

= P
n

+ P
n−1

−P
n

2Δtn
Δt +O (Δt2) (Adams-Bashforth)

(5.11)

leading to

λn+1 = θpΔt
(
P

n+1

− P
n
)
−
P

n

− P
n−1

2Δtn
Δt2 (5.12)

16 CHAPTER 5. FULLY-IMPLICIT PROJECTION

or

P
n+1

= P
n

+
1

θpΔt

(
λn+1 +

P
n

− P
n−1

2Δtn
Δt2

)
(5.13)

After some simple algebraic manipulations with eq.(5.12) under θp = 1
2

and

Δtn = Δt,

λn+1 �
Δt3

2

(
∂2P

∂t2

)n

(5.14)

Thus, λ is a representation of the third-order truncation errors1, and we call this

scheme as “pressure curvature” form.

In general, both pressure-gradient and pressure-curvature forms belong to the

class of “incremental projection” algorithms, as introduced in [BCG89].

5.1.2 Incremental forms

Let us search a new-time solution iteratively, defining new-iteration values U
♦♦

,

V
♦♦

or W
♦♦

in the following incremental form:

p̄
♦♦

= p̄
♦

+ p′ (5.15)

λ
♦♦

= λ
♦

+ λ′ (5.16)

v
♦♦

= v
♦

+ v′ (5.17)

v��� = v�� + v�′ = v
♦♦

+
1

ρ
∇λ

♦♦

(5.18)

and assume the following linearization of body force:

F
♦♦

= F
♦

+ F
v

(
U

♦
)
v′ + f

p

(
U

♦
)
p′ (5.19)

1Trully speaking, this holds only for θp =
1
2 .

5.1. INCOMPRESSIBLE, ISOTHERMAL, LAMINAR FLOW 17

where specific forms of the linearization matrix F
v

and vector f p are problem-

dependent.

We note that from eq.(5.18),

v
♦♦

= v��� −
1

ρ
∇λ

♦♦

= v�� + v�′ −
1

ρ
∇
(
λ

♦

+ λ′
)

(5.20)

and

v
♦

+ v′ = v�� −
1

ρ
∇λ

♦

︸ ︷︷ ︸
v♦

+v�′ −
1

ρ
∇λ′ (5.21)

Thus,

v′ = v�′ −
1

ρ
∇λ′ (5.22)

Also,

λ
♦

= θpΔt
(
p̄
♦

− p̄n
)

(5.23)

and

λ′ = θpΔtp
′ (5.24)

Plug eqs.(5.17) and (5.16) into eq.(4.9):

M
(
v

♦

+ v�′ − 1
ρ
∇λ′ − vn

)
= Δt(1− θ) [K − A(ρ,vn)]vn+

+ΔtθK
(
v

♦

+ v�′ − 1
ρ
∇λ′
)
−

−Δtθ A

(
ρ,v

♦

+ v�′ −
1

ρ
∇λ′
)(

v
♦

+ v�′ −
1

ρ
∇λ′
)

︸ ︷︷ ︸
≈A(ρ,v♦)

(
v♦+v�′

− 1
ρ
∇λ′
)

+

+Δt(1− θ)Fn +Δtθ
(
F

♦

+ F
v

(
v�′ − 1

ρ
∇λ′
)
+ 1

θpΔt
f pλ

′
)
−

−ΔtBp̄n −ΔtθpB(p̄
♦

+ 1
θpΔt

λ′ − p̄n)

(5.25)

After re-grouping and collecting terms, the momentum correction equation

becomes:[(
Δtθ
(
K − A

(
ρ,v

♦
)
+ F

v

)
−M
)

1
ρ
∇− θ

θp
fp +B

]
λ′ +

+
[
M −Δtθ

(
K − A

(
ρ,v

♦
)
+ F

v

)]
v�′ = −res

v

(5.26)

18 CHAPTER 5. FULLY-IMPLICIT PROJECTION

where

res
v
=M

(
v

♦

− vn
)
−Δt

(
(1− θ)Kvn + θKv

♦
)
+

+Δt
(
(1− θ)A (ρ,vn)vn + θA

(
ρ,v

♦
)
v

♦
)
−

−Δt
(
(1− θ)Fn + θF

♦
)
+

+Δt
(
Bp̄n + θpB(p̄

♦

− p̄n)
) (5.27)

To derive pressure correction (Lagrange multiplier) equation, we take diver-

gence of eq.(5.20):

�
�
�
���

0
∇ · v

♦♦

= ∇ · v�� +∇ · v�′ −∇ ·
1

ρ
∇λ

♦

−∇ ·
1

ρ
∇λ′ (5.28)

After collecting the terms, we derive the following pressure correction equation:

∇ ·
1

ρ
∇λ′ −∇ · v�′ = −res

λ
(5.29)

where

res
λ
= ∇ ·

1

ρ
∇λ

♦

−∇ · v�� (5.30)

With this, linear iterations of a Newton-based algorithm are defined by the follow-

ing equation:⎡
⎢⎢⎢⎢⎢⎣

∇ · 1
ρ
∇ −∇·

(
Δtθ
(
K − A

(
ρ,v

♦
)
+ F

v

)
−M

)
1
ρ
∇−

− θ
θp

fp +B
M −Δtθ

(
K −A

(
ρ,v

♦
)
+ F

v

)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Jacobian, J

W

[
λ′

v�′

]
︸ ︷︷ ︸

W′

=

= −

[
res

λ

res
v

]
︸ ︷︷ ︸

�res
V

(5.31)

Non-linear residuals res
λ

and res
v

are supplied to PETSC-SNES [BBE+04]

for JFNK implementation.

5.1. INCOMPRESSIBLE, ISOTHERMAL, LAMINAR FLOW 19

5.1.3 Implicit treatment of advection operator

In the present section, we discuss Hydra’s treatment of advection operator, and

introduce modifications removing operator-splitting on spatial variation of an ad-

vected scalar.

For simplicity of presentation, we consider only time derivative and convective

terms of a generic scalar advection equation,

∂
t
ωϕ = −∇ · (ωϕv̂)

for an arbitrary scalar function ϕ, where

ω =

⎧⎨
⎩

1 : volume coordinates

ρ : mass coordinates

etc.

In the context of ongoing discussion of momentum equation, ϕ represents com-

ponents of velocity vector vx , vy and vz . Vector v̂ is generally a divergence-free

velocity field. Since we operate in terms of an approximate projection, there are

small numerical divergence errors, which will be accounted for by substracting

the correction term from the discrete representation of advection operator, as

∂tωϕ = −∇ · (ωϕv̂) + ωϕ∇ · v̂︸ ︷︷ ︸
Correction

(5.32)

Next, we write the n-th and the (n + 1)-th time level dicrete contributions for

discretization at cell a as:

(1− θ)ωΩ
ϕn+1
a

−ϕn
a

Δt
=

− (1− θ)
∑
f

ωΓ
f

2

[
vn
f

(
ϕ−

a

n
+ ϕ+

b

n)
−
∣∣∣vn

f

∣∣∣ (ϕ+
b

n
− ϕ−

a

n)]
+

+ (1− θ)ωΩϕn
a
Dv̂n

a

(5.33)

and

θωΩ
ϕn+1
a

−ϕn
a

Δt
=

− θ
∑
f

ωΓ
f

2

[
vn+1
f

(
ϕ−

a

n+1
+ ϕ+

b

n+1
)
−
∣∣∣vn+1

f

∣∣∣ (ϕ+
b

n+1
− ϕ−

a

n+1
)]

+

+θωΩϕn+1
a

Dv̂n+1
a

(5.34)

20 CHAPTER 5. FULLY-IMPLICIT PROJECTION

where we used the LLF-based approximate Riemann solver2. Summation is per-

formed over all faces of the cell a. Γ
f

is the area of the face between cells a and

b, while v
f

is the face normal velocity and D is the discrete divergence operator,

corresponding to the used approximate projection.

Next, we add eqs.(5.33) and (5.34), using a simple linearization of non-linear

terms and re-grouping:

ωΩϕ
♦♦

a
− ωΩϕ

n

a
=

−Δt (1− θ)
∑
f

ωΓ
f

2

[
vn
f

(
ϕ−

a

n
+ ϕ+

b

n)
−
∣∣∣vn

f

∣∣∣ (ϕ+
b

n
− ϕ−

a

n)]
−

−Δtθ
∑
f

ωΓ
f

2

[
v

♦

f

(
ϕ−

a

♦♦

+ ϕ+
b

♦♦
)
−
∣∣∣v♦

f

∣∣∣ (ϕ+
b

♦♦

− ϕ−
a

♦♦
)]

+

+Δt (1− θ)ωΩϕn
a
Dv̂n

a
+ΔtθωΩϕ

♦♦

a
Dv̂

♦

a

(5.35)

The sided face values are computed as

ϕ−
a

= ϕa + ∇̃ϕaδra

ϕ+
b

= ϕ
b
− ∇̃ϕ

b
δr

b

(5.36)

where ∇̃ is a limited gradient evaluated at cell center, and δr is radius-vector

poniting from the cell center to edge. Plugging eq.(5.36) into eq.(5.35) and re-

2This is the “incompressible” version, where there exist only one eigenvalue – material

velocity.

5.1. INCOMPRESSIBLE, ISOTHERMAL, LAMINAR FLOW 21

arranging,

ωΩ
(
1−ΔtθDv̂

♦

a

)
ϕ

♦♦

a
+Δtθ

∑
f

ωΓ
f

2

⎡
⎣ v

♦

f

(
ϕ

♦♦

a
+ ϕ

♦♦

b

)
−

−
∣∣∣v♦

f

∣∣∣ (ϕ♦♦

b
− ϕ

♦♦

a

)
⎤
⎦

︸ ︷︷ ︸
Ã

♦
ϕ
♦♦

=

= ωΩϕ
n

a
−Δt (1− θ)

∑
f

ωΓ
f

2

⎡
⎣ vn

f

(
ϕn

a
+ ∇̃ϕn

a
δr

a
+ ϕn

b
− ∇̃ϕn

b
δr

b

)
−

−
∣∣∣vn

f

∣∣∣ (ϕn
b
− ∇̃ϕn

b
δr

b
− ϕn

a
− ∇̃ϕn

a
δra

)
⎤
⎦+

+Δt (1− θ)ωΩϕn
a
Dv̂n

a
−︸ ︷︷ ︸

Anϕn

−Δtθ
∑
f

ωΓ
f

2

⎡
⎣ v

♦

f

(
∇̃ϕ

♣

a
δra − ∇̃ϕ

♣

b
δr

b

)
+

+
∣∣∣v♦

f

∣∣∣ (∇̃ϕ♣

b
δr

b
+ ∇̃ϕ

♣

a
δra

)
⎤
⎦

︸ ︷︷ ︸
δÃ♦ϕ♣

(5.37)

In the semi-implicit projection, the limited spatial gradients are evaluated at the n-

th time level, ♣ = n, introducing some stability restrictions and operator-splitting

errors. In the fully-implicit projection, one can use current-iterate values, ♣ = ♦,

removing these deficiencies upon non-linear iteration convergence.

5.1.4 Relevance to semi-implicit projection

To establish relation to the semi-implicit projection, we note that

v∗ = v
��(d)

+
1

ρ
∇λ

♦♦

(5.38)

or

v∗ = v
n+1

+
1

ρ
∇λ

n+1

(5.39)

upon convergence of non-linear procedure. Also,

λ
♦♦

= λ
♦

+ λ′ (5.40)

22 CHAPTER 5. FULLY-IMPLICIT PROJECTION

We plug these into eq.(4.9), and re-group as

M v∗
−vn

Δt
= (1− θ)

(
Kv

n

−A(ρ,v
n

)v
n

+ F
n)

−Bp̄n︸ ︷︷ ︸
�Sn

+

+θ

⎛
⎜⎜⎜⎝
[
K −A(ρ,v

♦

)
]
v∗ + F

♦

−
[
K − A(ρ,v

♦

)
](1

ρ
∇λ

♦

)
︸ ︷︷ ︸

Ξt

⎞
⎟⎟⎟⎠+

− θ

([
K − A(ρ,v

n+1

)
](1

ρ
∇λ′
)
+

1

θ
p
Δt

f pλ
′ + F

v
v′

)
︸ ︷︷ ︸

δJ v

(5.41)

Now, comparing with eq.(4.14), the difference is in the following term on the

r.h.s.:

m′ = −θ (Ξt + δJ
v
) (5.42)

Further re-grouping, we can write:[
M − θΔt

(
K − A

(
ρ,v

♦
))]

v∗ = [M + (1− θ)Δt (K − A (ρ,vn))]vn+

+Δt
(
(1− θ)Fn + θF

♦

−Bp̄n − θ δÃv
♦

+m′
) (5.43)

where we used the results of Section 5.1.3 for discretization of advection operator.

We can further notice that Helmholtz decomposition becomes

v∗ = v
♦

+ v′︸ ︷︷ ︸
v♦♦

+
1

ρ
∇
(
λ

♦

+ λ′
)

(5.44)

which leads to the following PPE:

∇ ·
1

ρ
∇
(
λ

♦

+ λ′
)
= ∇ · v∗ (5.45)

which is exactly the same as eq.(4.13).

Concerning eq.(5.42), we would like to add a couple of comments.

5.1. INCOMPRESSIBLE, ISOTHERMAL, LAMINAR FLOW 23

1. In semi-implicit P2 projection and in the following Picard iterations, the

term δJ
v

is naturally dropped.

• For P2 projection, this introduces certain operator splitting errors, which

not necessary means that the method becomes 1st-order accurate in

time. In fact, it is well established that the method converges with

the 2nd-order for velocity. It is however only 1-st order accurate for

pressure.

• For Picard iterations, dropping these terms means that convergence

rate is not quadratic, as non-linear iterations do not follow slope (de-

fined by Jacobian matrix), as some elements of the Jacobian matrix are

effectively zero-ed out.

2. In P2 projection, the term Ξt is also ignored.

3. The term Ξt is effectively the generalized3 version of the pressure-update

formula eq.(13) in [BCM01]. Instead of adding
(
−νΔt

2
∇2φn+1

)
(in the no-

tation of [BCM01]) explicitely to the left of eq.(5.48), we add the current-

iteration-based correction to the r.h.s. of the “predictor” velocity equation

(5.43).

4. If the term Ξt is dropped, the “predictor” velocity equation (5.43) is effec-

tively decoupled from PPE, along the lines of the classical fractional-step

projection algorithm. There are small feedbacks which could be still in-

troduced by possible non-linear momentum source terms, and because of

fully-implicit treatment of advection operator, but these might be ignored

w/o significant impact.

5. Dropping the term Ξt is however undesirable when this algorithm is used

as a preconditioning for Newton-based non-linear solver, as upon non-linear

convergence, this predictor would produce different solution from what is

attempted to be solved by JFNK.

5.1.5 Picard Iterations

Based on eqs.(5.43)-(5.45) we can build point-iteration algorithm as follows.

3In addition to viscous effects, we account for splitting errors due to advection.

24 CHAPTER 5. FULLY-IMPLICIT PROJECTION

Algorithm 2 Picard Iterations

1. Set initial guess for m = 0:

v
♦

= vn

v′ = 0

p̄
♦

= p̄n

p′ = 0

λ
♦

= 0
λ′ = 0

2. Start the mth iteration.

3. Solve for v∗:[
M − θΔt

(
K

♦

− Ã
♦
)]

v∗ = [M + (1− θ)Δt (Kn − An)]vn+

+Δt
(
(1− θ)Fn + θ

(
F

♦

− δÃ
♦

v
♦
)
−Bp̄n − θΞt

) (5.46)

4. Compute face-centered velocities v�
f
.

5. Form the right-hand-side of the PPE eq.(5.45), solve for λ
♦♦

,

Kpλ
♦♦

= D (5.47)

6. Update the pressure

p̄
♦♦

= p̄n +
1

θpΔt
λ

♦♦

(5.48)

7. Project the cell-centered velocities

v
♦♦

= v∗ −
1

ρ
Bλ

♦♦

(5.49)

8. Compute face gradients and project the face-centered velocities

vf = v∗f −
1

ρf
((B)λ

♦♦

)f · n (5.50)

5.1. INCOMPRESSIBLE, ISOTHERMAL, LAMINAR FLOW 25

9. Picard iteration velocity and pressure corrections are now:

v′ = v
♦♦

− v
♦

λ′ = λ
♦♦

− λ
♦ (5.51)

which allows to compute errors as

E
(m)
v = L2 (v

′)

E
(m)
λ = L2 (λ

′)
(5.52)

10. Check for convergence:

E
(m)
v < tola

E
(m)
λ < tola

E
(m)
v < tolr E

(0)
v

E
(m)
λ < tolr E

(0)
λ

(5.53)

If not satisfied, set new Picard iteration (m++):

v
♦

= v
♦♦

p̄
♦

= p̄
♦♦

λ
♦

= λ
♦♦

and repeat starting from (2).

11. Otherwice, finish time step:

vn+1 = v
♦♦

p̄n+1 = p̄
♦♦

5.1.6 Interpretation with the generalized block LU decomposi-

tion

It is very informative to cast the above-presented algorithm along the lines of the

generalized block LU factorization, as introduced by Perot in [Per93]. We do this

by introducing the following operators:

C ≡ Δtθ (K − A+ F) (5.54)

Q ≡ M − C (5.55)

26 CHAPTER 5. FULLY-IMPLICIT PROJECTION

where the operators M , A, K and F are defined in eq.(4.8). Also, by D we will

denote the discrete divergence operator. With these, one can write eq.(5.2) in the

following semi-discrete form:⎧⎪⎪⎨
⎪⎪⎩

Qv
n+1

+ΔtBP
n+1

2 =

[
M +

1− θ

θ
C

]
v

n

︸ ︷︷ ︸
a

Dv
n+1

= 0

(5.56)

or, in matrix form: [
Q ΔtB
D 0

](
v

n+1

P
n+1

2

)
=

(
a
0

)
(5.57)

Following Perot [Per93], we introduce the operator E , and approximate eq.(5.57)

with [
Q (QE)ΔtB
D 0

](
v

n+1

P
n+1

2

)
=

(
a
0

)
(5.58)

which enables the following LU factorization:[
Q (QE)ΔtB
D 0

]
=

[
Q 0
D −DEΔtB

]
·

[
I EΔtB
0 I

]
(5.59)

where I denotes the identity matrix. For E , Perot suggested to use the following

operator4

E = Δt2
(
M−1 +ΔtθK

)
(5.60)

This operator allows to compensate for the 1st-order errors, leading to the 2nd or-

der (in time) method for velocity5.

As noted by Perot, the choice of E = Q−1 corresponds to the Uzawa’s method.

The closely-related variations of SIMPLE algorithm [PS72] correspond to E ≈

4Perot utilized explicit Adams-Bashforth method for advection operator, and also ig-

nored body forces. Also, we did change notations relative to [Per93].
5As noted by Perot, no matter what scheme is used, the discrete pressure will always

be first-order accurate in time, which is consistent with our findings.

5.1. INCOMPRESSIBLE, ISOTHERMAL, LAMINAR FLOW 27

Q−1. Both methods require nested iterative loops.

Let’s re-cast our semi-implicit and fully-implicit algorithms into this LU fac-

torization framework. First, we replace the pressure with the Lagrange multiplier

defined by eq.(5.5), leading to:[
Q (QE)B
D 0

](
v

n+1

λ
n+1

)
=

(
a−Δt (QE)BP

�

0

)
(5.61)

Next, we can re-write eq.(5.61) as[
Q QM−1B
D 0

](
v

n+1

λ
n+1

)
=

(
a−Δt (QE)BP

�

+Q (M−1 − E)Bλ
�

0

)
(5.62)

Now, we define E as

E = Q−1

i.e., the same as in Uzawa/SIMPLE-based methods. This will lead to[
Q QM−1B
D 0

](
v

n+1

λ
n+1

)
=

(
a−Δt (QE)BP

�

− CM−1Bλ
�

0

)
(5.63)

In the semi-implicit projection, the term in box is dropped, without affecting the

order of accuracy and robustness. In the fully-implicit projection, this term is

exactly the advection/diffusion of irrotational part of velocity field (term Ξt in

eq.(5.41)), which can also be safely ignored for large-CFL simulations. How-

ever, we found that ignoring this term is responsible for formation of “projection

boundary layers” for high-Foν-number transient simulations (see Section 7.2, also

briefly mentioned by Perot in [Per93]), so we keep it for low-CFL transients6.

Now, the l.h.s. matrix of eq.(5.63) can be LU-factorized as

[
Q QM−1B
D 0

]
=

⎡
⎣ Q 0

D −DM−1B︸ ︷︷ ︸
≈Kp

⎤
⎦ ·

[
I M−1B
0 I

]
(5.64)

which is exactly what we do in our 3-step Picard iteration loop, provided that

operator DM−1B is replaced by approximate Laplacian Kp:

6It can be seen that this term introduces a coupling to PPE, which might be too stiff

when solving large-CFL flows with the Picard-iteration based algorithm.

28 CHAPTER 5. FULLY-IMPLICIT PROJECTION

1,2 Solve for HD-velocity and Lagrange multiplier (PPE):

[
Q 0
D −K

p

](
v�

λ
��

)
=

(
a−Δt (QE)BP

�

− CM−1Bλ
�

0

)
(5.65)

3 Project (LU-backsubstitution):

[
I M−1B
0 I

](
v

��

λ
��

)
=

(
v�

λ
��

)
(5.66)

5.2 Adding thermal and turbulent effects

The governing equations are eqs.(3.2), (3.4), (3.8) and (3.11). For the sake of

discussion, we can think of Spalart-Allmaras turbulence model, when N = 1 and

φn = μt is turbulent viscosity. The vectors of unknowns are

U =

⎡
⎢⎢⎣
p̄
v
T̄
ν̄
t

⎤
⎥⎥⎦ ; V =

⎡
⎢⎢⎣
λ
v
T̄
ν̄
t

⎤
⎥⎥⎦ ; or W =

⎡
⎢⎢⎣

λ
v�

T̄
ν̄
t

⎤
⎥⎥⎦ ; (5.67)

and the governing equations can be written as

∇ · v = 0 (5.68)

ρ
∂v

∂t
+ ρ∇ · (v ⊗ v) = −∇P +∇ · τ (T, νt ,v) + ρf (T,v) (5.69)

∂ρu (T)

∂t
+∇ ·

(
ρu(T)v

)
= ∇ ·

(
κ (T, νt)∇T

)
+ q

′′′

(T,v) (5.70)

∂ (ρνt)

∂t
+∇ ·

(
ρν

t
v
)
= ∇ ·

(
ρζ (T, ν

t
)∇ν

t

)
+ T (ν

t
, T,v) (5.71)

where u, νt =
μt

ρ
, ζ and T are specific internal energy, turbulent kinematic vis-

cosity, diffusivity for turbulent viscosity, and source/damping term in Spalart-

Allmaras model, correspondingly.

5.2. ADDING THERMAL AND TURBULENT EFFECTS 29

Now, we define the following operators:

M = ρΩe (5.72)

C (T) T =

∫
Ωe

ρCp (T)T dΩ
e (5.73)

A(ρ,v)v =

∮
Γe

ρv(v · n) dΓe (5.74)

A
φ
(ρ,v)φ =

∮
Γe

ρφ(v · n) dΓe (5.75)

K (T, νt)v =

∮
Γe

τ (T, νt ,v) · n dΓ
e (5.76)

D (T, νt) T =

∮
Γe

κ (T, νt) (∇T · n) dΓe (5.77)

L (T, ν
t
) ν

t
=

∮
Γe

ρζ (T, ν
t
) (∇ν

t
· n) dΓe (5.78)

Bp̄ =

∫
Ωe

∇p dΩe (5.79)

F (T,v) =

∫
Ωe

f (T,v) dΩe (5.80)

Q (T,v) =

∫
Ωe

q
′′′

(T,v) dΩe (5.81)

W (ν
t
, T,v) =

∫
Ωe

T (ν
t
, T,v) dΩe (5.82)

Next, we define new-iteration values U
♦♦

(or V
♦♦

) in the following incre-

mental form:

p̄
♦♦

= p̄
♦

+ p′ (5.83)

λ
♦♦

= λ
♦

+ λ′ (5.84)

v
♦♦

= v
♦

+ v′ (5.85)

v��� = v�� + v�′ = v
♦♦

+
1

ρ
∇λ

♦♦

(5.86)

30 CHAPTER 5. FULLY-IMPLICIT PROJECTION

T̄
♦♦

= T̄
♦

+ T ′ (5.87)

ν̄t

♦♦

= ν̄t

♦

+ νt

′ (5.88)

and introduce the following linearization of source terms:

F
♦♦

= F
♦

+ F
v

(
U

♦
)
v′ + f

T

(
U

♦
)
T ′ (5.89)

Q
♦♦

= Q
♦

+Q
v

(
U

♦
)
v′ +Q

T

(
U

♦
)
T ′ (5.90)

W
♦♦

= W
♦

+W
v

(
U

♦
)
v′ +W

T

(
U

♦
)
T ′ +Wν

(
U

♦
)
ν

′

t
(5.91)

Also, similar to Section 5.1,

v′ = v�′ −
1

ρ
∇λ′ (5.92)

λ
♦

= θpΔt
(
p̄
♦

− p̄n
)

(5.93)

and

λ′ = θ
p
Δtp′ (5.94)

Momentum. Plugging these into discrete form of eq.(5.69):

M
(
v

♦

+ v�′ − 1
ρ
∇λ′ − vn

)
= Δt(1− θ)

(
K
(
T n, νn

t

)
− A(ρ,vn)

)
vn+

+Δtθ K
(
T

♦

+ T ′, ν
�

t
+ ν

′

t

)(
v

♦

+ v�′ −
1

ρ
∇λ′
)

︸ ︷︷ ︸
≈K(T♦ ,ν�

t)v
♦+K̃v′+K̂T ′+K̄ν′

t
=K♦v♦+ ˜̃Kv�′

+
ˆ̂
K∇λ′+K̂T ′+K̄ν′

t

−Δtθ A

(
ρ,v

♦

+ v�′ −
1

ρ
∇λ′
)(

v
♦

+ v�′ −
1

ρ
∇λ′
)

︸ ︷︷ ︸
≈A(ρ,v♦)v♦+ ˜̃Av�′

−
ˆ̂
A 1

ρ
∇λ′

+

+Δt(1− θ)Fn +Δtθ
(
F

♦

+ F
♦

v

(
v

�′

− 1
ρ
∇λ

′
)
+ f

♦

T
T ′
)
−

−ΔtBp̄n −Δtθ
p
B(p̄

♦

+ 1
θpΔt

λ′ − p̄n)

(5.95)

Note, for the purpose of our discussion, exact forms of the linearization coeffi-

cients
˜̃A,

˜̃K,
ˆ̂
K, K̂ and K̄ are not important, as we would never need to explicitely

5.2. ADDING THERMAL AND TURBULENT EFFECTS 31

compute them.

After re-grouping and term collection, we got the following momentum correction

equation:

[(
Δtθ
(
ˆ̂
K −

ˆ̂
A+ F

v

)
−M
) 1
ρ
∇+B

]
λ′ − Δtθ

(
K̂+ f

�

T

)
T ′ +

+
[
M −Δtθ

(
˜̃K − ˜̃A+ F

v

)]
v�′ − ΔtθK̄ ν

′

t
= −res

v

(5.96)

where

res
v
=M

(
v

♦

− vn
)
−Δt

(
(1− θ)Knvn + θK

♦

v
♦
)
+

+Δt
(
(1− θ)Anvn + θA

♦

v
♦
)
−

−Δt
(
(1− θ)Fn + θF

♦
)
+

+Δt
(
Bp̄n + θpB(p̄

♦

− p̄n)
) (5.97)

The terms shown in boxes are the elements of the Jacobian matrix, which will

never be computed explicitely.

Pressure. To derive pressure correction (Lagrange multiplier) equation, we take

divergence of eq.(5.20). After collecting the terms, we derive pressure correction

equation, which is identical to eq.(5.29)”

∇ ·
1

ρ
∇ λ′ − ∇· v�′ = −res

λ
(5.98)

where

res
λ
= ∇ ·

1

ρ
∇λ

♦

−∇ · v�� (5.99)

32 CHAPTER 5. FULLY-IMPLICIT PROJECTION

Energy. Next, consider the following discrete form of energy conservation:

C
(
T

♦

+ T ′
)(

T
♦

+ T ′
)

︸ ︷︷ ︸
≈C♦T♦+ĈT ′

−CnT n = Δt (1− θ)
(
Dn − An

T
+Qn

)
T n+

+Δtθ
(
D
(
T

♦

+ T ′, ν
�

t
+ ν

′

t

)(
T

♦

+ T ′
)

︸ ︷︷ ︸
≈D♦T♦+D̂T ′+D̄ν′

t

−A
T

(
ρ,v

♦

+ v′
)(

T
♦

+ T ′
)

︸ ︷︷ ︸
≈A�

T
T♦+Â

T
T ′+ ˜̃

A
T
v�′

− ˆ̂
A

T
1
ρ
∇λ′

)
+

+Δtθ
(
Q

♦

+Q�
v
v

�′

−Q�
v

1
ρ
∇λ′ +Q

♦

T
T ′
)

(5.100)

As stated before, the exact forms of linearization coefficients D̂, D̄, Â
T

,
˜̃A

T
and

ˆ̂
A

T
are not important.

Collecting the terms, we got the following temperature correction equation:(
Ĉ −Δtθ

(
D̂ − Â

T
+Q

�

T

))
T ′ + Δtθ

(
˜̃A

T
−Q�

v

)
v

�′

+

+ Δtθ
(
Q�

v
−

ˆ̂
A

T

) 1
ρ
∇ λ′ − ΔtθD̄ ν

′

t
= −res

T

(5.101)

where

res
T
= C

♦

T
♦

− CnT n −Δt
(
(1− θ)DnT n + θD

♦

T
♦
)
+

+Δt
(
(1− θ)An

T
T n + θA

�

T
T

♦
)
−

−Δt
(
(1− θ)Qn + θQ

�
) (5.102)

Turbulent viscosity. Finally, lets consider discrete turbulent viscosity equation:

M
(
ν

�

t
+ ν

′

t
− νn

t

)
= Δt(1 − θ)

(
L
(
T n, νn

t

)
− An

ν

)
νn
t
+

+Δtθ
(
L
(
T

♦

+ T ′, ν
�

t
+ ν

′

t

)(
ν

�

t
+ ν

′

t

)
︸ ︷︷ ︸

≈L♦ν�
t
+L̂T ′+L̄ν′

t

−Aν

(
ρ,v

♦

+ v′
)(

ν
�

t
+ ν

′

t

)
︸ ︷︷ ︸
≈A�

ν
ν�
t
+Āν ν

′

t
+ ˜̃
Aνv

�′
− ˆ̂
Aν

1
ρ
∇λ′

)
+

+Δt(1 − θ)W n +Δtθ
(
W

♦

+W
♦

v
v

�′

−W
♦

v

1
ρ
∇λ′ +W

♦

T
T ′ +W

♦

ν
ν

′

t

)
(5.103)

5.2. ADDING THERMAL AND TURBULENT EFFECTS 33

which lead to the following turbulent viscosity correction equation:

− Δtθ
(
L̂+W

�

T

)
T ′ + Δtθ

(
˜̃Aν −W

♦

v

)
v

�′

+

+ Δtθ
(
W

♦

v
− ˜̃A

ν

) 1
ρ
∇ λ′ +

(
M −Δtθ

(
L̄− Ā

ν
+W

�

ν

))
ν

′

t
= −res

ν

(5.104)

where

resν =M
(
ν

�

t
− ν

n

t

)
−Δt

(
(1− θ)Lnν

n

t
+ θL

♦

ν
�

t

)
+

+Δt
(
(1− θ)An

ν
ν

n

t
+ θA

�

ν
ν

�

t

)
−

−Δt
(
(1− θ)W n + θW

�
) (5.105)

With this, linear iterations of a Newton-based algorithm are defined by the

following equation:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇ · 1

ρ
∇ −∇· 0 0

[(
Δtθ

(
ˆ̂
K −

ˆ̂
A + F

v

)
− M

)
1

ρ
∇ + B

] [
M − Δtθ

(
˜̃
K −

˜̃
A + F

v

)]
−Δtθ

(
K̂ + f

�

T

)
−ΔtθK̄

Δtθ
(
Q�

v
−

ˆ̂
A

T

)
1

ρ
∇ Δtθ

(
˜̃
A

T
− Q�

v

)
Ĉ − Δtθ

(
D̂ − Â

T
+ Q

�

T

)
−ΔtθD̄

Δtθ

(
W

♦

v
−

˜̃
Aν

)
1

ρ
∇ Δtθ

(
˜̃
Aν − W

♦

v

)
−Δtθ

(
L̂ + W

�

T

)
M − Δtθ

(
L̄ − Āν + W

�

ν

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Jacobian, J

V

·

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ′

v
�′

T ′

ν
′

t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
W′

= −

⎡
⎢⎢⎣
res

λ

res
v

res
T

res
ν

⎤
⎥⎥⎦

︸ ︷︷ ︸
�res

V

(5.106)

Non-linear residuals res
λ
, res

v
, res

T
and resν are supplied to PETSC-SNES

[BBE+04] for JFNK implementation.

34 CHAPTER 5. FULLY-IMPLICIT PROJECTION

5.2.1 Relevance to semi-implicit projection

In the case of energy and turbulence equations, Hydra-TH semi-implicit P2 pro-

jection algorithm is implemented as follows:

1. Solve energy equation.

2. Solve (predictor) velocity equations (no divergence-free constraint enforced).

3. Solve turbulent transport.

4. Solve PPE for Lagrange multiplier.

5. Enforce mass conservation by projecting velocity field into the divergence-

free subspace.

Based on this sequence, the counterpart of eq.(5.106) is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇ · 1

ρ
∇ −∇· 0 0 [4]

0
[
M − Δtθ

(
˜̃
K −

˜̃
A + F

v

)]
−Δtθ

(
K̂ + f

�

T

)
0 [2]

0 0 Ĉ − Δtθ
(
D̂ − Â

T
+ Q

�

T

)
0 [1]

0 Δtθ

(
˜̃
Aν − W

♦

v

)
−Δtθ

(
L̂ + W

�

T

)
M − Δtθ

(
L̄ − Āν + W

�

ν

)
[3]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
OS solution matrix

·

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ′

v
�′

T ′

ν
′

t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
W′

= −

⎡
⎢⎢⎣
res

λ

res
v

res
T

resν

⎤
⎥⎥⎦

︸ ︷︷ ︸
�res

V

(5.107)

where we show the sequence of the operator-splitting (fractional) steps, as the last

column of the OS solution matrix. In the residual computations, one should use

5.2. ADDING THERMAL AND TURBULENT EFFECTS 35

v
♦

= vn, T
♦

= T n, ν
�

t
= νn

t
, p̄

♦

= p̄n and λ
♦

= 0. The last (projection) step of

the algorithm is symbolically:

vn+1 = v
♦

+ v
�′

−
1

ρ
∇λ′︸ ︷︷ ︸

(vd)
′

5.2.2 Picard Iterations

We can now formulate point-iteration algorithm as following.

Algorithm 3 Picard Iterations

1. Set initial guess for m = 0:

v
♦

= vn

v′ = 0

p̄
♦

= p̄n

p′ = 0

λ
♦

= 0
λ′ = 0

T
♦

= T n

T ′ = 0
ν

�

t
= νn

t

ν
′

t
= 0

2. Start mth iteration.

3. Solve for T
♦♦

:[
C

♦

− θΔt
(
D

♦

−A
�

T

)]
T

♦♦

=
[
Cn + (1− θ)Δt

(
Dn − An

T

)]
T n +

+Δt
(
(1− θ)Qn + θQ

♦

− θ δÃ
T
T

♦
) (5.108)

4. Compute temperature correction as

T ′ = T
♦♦

− T
♦

36 CHAPTER 5. FULLY-IMPLICIT PROJECTION

5. Solve for v∗:[
M − θΔt

(
K

♦

−A
♦
)]

v∗ =
[
M + (1− θ)Δt

(
Kn − An

)]
vn +

+Δt
(
(1− θ)Fn + θ

(
F

♦

+ f
♦

T
T ′ − δÃ

♦

v
♦
)
−Bp̄n − θΞt

) (5.109)

6. Compute velocity corrections as

(v′)
∗
= v∗ − v

♦

7. Compute face-centered velocities v�
f
.

8. (Need some work!!!) Solve for ν
��

t
:[

M − θΔt
(
L

♦

− A
�

ν

)]
ν

��

t
=
[
M + (1− θ)Δt

(
Ln − An

ν

)]
νn
t
+

+Δt
(
(1− θ)W n + θ

(
W

♦

+W
♦

v
(v′)∗ +W

♦

T
T ′
)) (5.110)

9. Form the right-hand-side of the PPE eq.(5.45), solve for λ
♦♦

,

Kpλ
♦♦

= D (5.111)

10. Update the pressure

p̄
♦♦

= p̄n +
1

θpΔt
λ

♦♦

(5.112)

11. Project the cell-centered velocities

v
♦♦

= v∗ −
1

ρ
Bλ

♦♦

(5.113)

12. Compute face gradients and project the face-centered velocities

v
��

f = v∗f −
1

ρf
((B)λ

♦♦

)f · n (5.114)

5.2. ADDING THERMAL AND TURBULENT EFFECTS 37

13. Picard iteration velocity, turbulent viscosity and pressure corrections are

now:

v′ = v
♦♦

− v
♦

ν ′
t

= ν
��

t
− ν

�

t

λ′ = λ
♦♦

− λ
♦

(5.115)

which allows to compute errors as

E
(m)
v = L2 (v

′)

E
(m)
λ = L2 (λ

′)

E
(m)
T = L2 (T

′)

E
(m)
νt = L2

(
ν ′
t

) (5.116)

14. Check for convergence:

E
(m)
v < tola

E
(m)
λ < tola

E
(m)
T < tola

E
(m)
νt < tola

E
(m)
v < tolr E

(0)
v

E
(m)
λ < tolr E

(0)
λ

E
(m)
T < tolr E

(0)
T

E
(m)
νt < tolr E

(0)
νt

(5.117)

If not satisfied, set new Picard iteration (m++):

v
♦

= v
♦♦

p̄
♦

= p̄
♦♦

λ
♦

= λ
♦♦

T
♦

= T
♦♦

ν�
t

= ν��
t

and repeat starting from (2).

15. Otherwice, finish time step:

vn+1 = v
♦♦

p̄n+1 = p̄
♦♦

T n+1 = T
♦♦

νn+1
t

= ν��
t

This Page is Intentionally Left Blank

Chapter 6

Preconditioning

6.1 General strategy

Consider the following modification of eq.(5.31):

J
V
P
−1︸ ︷︷ ︸

J
P

PV′︸︷︷︸
V′′

= − �res
V
(V′)︸ ︷︷ ︸

�b

(6.1)

where P symbolically represents the preconditioning matrix (or process), and P−1

is its inverse. Thus, the solution procedure is splitted into two processes:

1. Solving for

J
P
V′′ = �b (6.2)

(this is what actually crunched by GMRES), and

2. Preconditioning:

V′ = P
−1V′′ (6.3)

While one refers to the matrix/process P, operationally the algorithm only re-

quires the action of P−1 on a vector. The main requirement is that P designed prop-

erly, to enable clustering eigenvalues of the J
P

, making the solution of eq.(6.2) to

converge faster.

39

40 CHAPTER 6. PRECONDITIONING

For effective preconditioning of the fully-implicit projection algorithm, we can

use semi-implicit algorithm described in Chapter 4. The strategy with involving

a legacy (e.g., operator-splitting) algorithm for preconditioning is commonly re-

ferred to as Physics-(Process)-based preconditioning (PBP) [KK04, KR00, KCMM03,

KMK96, KMCR05], to be contrasted to the Matrix-(Math)-based preconditioning

(MBP) algorithms. The later include different flavors of SOR, SSOR, ILU, MILU,

ILUT, ILUTP, ILUS, ILUC, etc. preconditioners, see [SS86] for review. In these

cases, the preconditioning matrix P is required, as a suitable approximation for J
V

.

In the following section, we will describe details of our implementation of the

semi-implicit projection as PBP, emphasizing all differences relative to the using

this algorithm as a solver (in an operator-splitting OS mode).

6.2 Semi-Implicit Projection as Physics-Based Pre-

conditioning

At the input of the preconditioning step, we have current Newton iteration values

of v
♦

, p̄
♦

and λ
♦

, and current update values v′′, p̄′′ and λ′′. In the OS splitting mode,

these are:

v
♦

= vn, p̄
♦

= p̄n, λ
♦

= 0, v′′ = 0, p̄′′ = 0 and λ′′ = 0

The task of the preconditioning is to convert these into v
♥

, p̄
♥

, λ
♥

, v′, p̄′ and λ′,
where

v
♥

= v
♦

+ v′

p̄
♥

= p̄
♦

+ p̄′

λ
♥

= λ
♦

+ λ′
(6.4)

In the OS mode, Φ
♥

= Φ
n+1

, where Φ = v, p̄ and λ.

We define Helmholtz decomposition as

v♥,� = v
♦

+ v′︸ ︷︷ ︸
Divergence-free part, v

♥

+
1

ρ
∇
(
λ

♦

+ λ′
)

︸ ︷︷ ︸
λ♥

(6.5)

6.2. SEMI-IMPLICIT PROJECTION AS PHYSICS-BASED PRECONDITIONING41

Non-incremental Form

1. The first step would be to solve for non-solenoidal (“predictor”) velocity

field, v♥,�, using one of the following options.

Option-A:

[M −Δtθ (K −A(ρ,v) + F
v
)]v♥,� =

= [M +Δt(1− θ) (K − A(ρ,v))]vn − ΔtθK

(
Δtθp
ρ

∇
(
p̄
♦

+ p′′ − p̄n
))

+

+ ΔtθA(ρ,v)

(
Δtθp
ρ

∇
(
p̄
♦

+ p′′ − p̄n
))

+

+Δt(1− θ)Fn +Δtθ
(
F

♦

− F
v

(
Δtθp
ρ

∇
(
p̄
♦

− p̄n
)
+ v

♦
))

−

−Δtθ
[
F

v

Δtθp
ρ

∇− f p

]
p′′−

−ΔtBp̄n −

(
ΔtθpB(p̄

♦

+ p′′ − p̄n)−
Δtθp
ρ

∇
(
p̄
♦

+ p′′ − p̄n
))

(6.6)

In the OS mode, v♥,� = v� and eq.(6.6) reduces to eq.(4.14).

Option-B:

Equation (6.6) is of advection-diffusion type, which is not well ameanable

to multigrid algorithm, and solved in Hydra by ILU-based solver. Another

viable option would be to convert it into the parabolic equation, by taking

out advection operator on the left-hand-side (leaving it to GMRES to deal

42 CHAPTER 6. PRECONDITIONING

with). Thus, the parabolic equation would be:

[M −Δtθ (K + F
v
)]v♥,� = [M +Δt(1− θ) (K − A(ρ,v))]vn−

−ΔtθA(ρ,v)
(
v

♦

+ v′′
)
− ΔtθK

(
Δtθp
ρ

∇
(
p̄
♦

+ p′′ − p̄n
))

+

+ ΔtθA(ρ,v)

(
Δtθp
ρ

∇
(
p̄
♦

+ p′′ − p̄n
))

+

+Δt(1− θ)Fn +Δtθ
(
F

♦

− F
v

(
Δtθp
ρ

∇
(
p̄
♦

− p̄n
)
+ v

♦
))

−

−Δtθ
[
F

v

Δtθp
ρ

∇− f p

]
p′′−

−ΔtBp̄n −

(
ΔtθpB(p̄

♦

+ p′′ − p̄n)−
Δtθp
ρ

∇
(
p̄
♦

+ p′′ − p̄n
))

(6.7)

2. The second step would be to form and solve PPE. Taking divergence of

eq.(6.5) leads to the following PPE:

∇ ·
1

ρ
∇λ

♥

︸ ︷︷ ︸
Kpλ

♥

= ∇ · v♥,�︸ ︷︷ ︸
D

(6.8)

which reduces to eq.(4.15) in the OS mode.

3. Pressure is computed from the new Lagrange multiplier as:

p̄
♥

= p̄n +
1

θpΔt
λ

♥

(6.9)

4. Next, we project the cell-centered velocities as

v
♥

= v♥,� −
1

ρ
Bλ

♥

(6.10)

5. Finally, we can compute

v′ = v
♥

− v
♦

p̄′ = p̄
♥

− p̄
♦

λ′ = λ
♥

− λ
♦

(6.11)

6.2. SEMI-IMPLICIT PROJECTION AS PHYSICS-BASED PRECONDITIONING43

and these are the values which are returned to PETSC-SNES. As mentioned

above, in the OS mode, this step is absent, as Φ
♥

= Φ
n+1

.

Incremental Form One can re-write eq.(6.5) as:

v♥,� = v
♦

+ v�′ (6.12)

where

v�′ = v′ +
1

ρ
∇
(
λ

♦

+ λ′
)

(6.13)

1. Solve for non-solenoidal velocity increment v�′ .

Option-A:

[M −Δtθ (K −A(ρ,v) + F
v
)]v�′ = − [M −Δtθ (K − A(ρ,v) + F

v
)]v

♦

+

+ [M +Δt(1− θ) (K −A(ρ,v))]vn − ΔtθK

(
Δtθp
ρ

∇
(
p̄
♦

+ p′′ − p̄n
))

+

+ ΔtθA(ρ,v)

(
Δtθp
ρ

∇
(
p̄
♦

+ p′′ − p̄n
))

+

+Δt(1− θ)Fn +Δtθ
(
F

♦

− F
v

(
Δtθp
ρ

∇
(
p̄
♦

− p̄n
)
+ v

♦
))

−

−Δtθ
[
F

v

Δtθp
ρ

∇− f p

]
p′′−

−ΔtBp̄n −

(
ΔtθpB(p̄

♦

+ p′′ − p̄n)−
Δtθp
ρ

∇
(
p̄
♦

+ p′′ − p̄n
))

(6.14)

44 CHAPTER 6. PRECONDITIONING

Option-B:

[M −Δtθ (K + F
v
)]v�′ = − [M −Δtθ (K + F

v
)]v

♦

+
+ [M +Δt(1− θ) (K −A(ρ,v))]vn−

−ΔtθA(ρ,v)
(
v

♦

+ v′′
)
− ΔtθK

(
Δtθp
ρ

∇
(
p̄
♦

+ p′′ − p̄n
))

+

+ ΔtθA(ρ,v)

(
Δtθp
ρ

∇
(
p̄
♦

+ p′′ − p̄n
))

+

+Δt(1− θ)Fn +Δtθ
(
F

♦

− F
v

(
Δtθp
ρ

∇
(
p̄
♦

− p̄n
)
+ v

♦
))

−

−Δtθ
[
F

v

Δtθp
ρ

∇− f p

]
p′′−

−ΔtBp̄n −

(
ΔtθpB(p̄

♦

+ p′′ − p̄n)−
Δtθp
ρ

∇
(
p̄
♦

+ p′′ − p̄n
))

(6.15)

2. Solve incremental PPE:

∇ ·
1

ρ
∇λ′ = ∇ · v�′ −∇ ·

1

ρ
∇λ

♦

(6.16)

3. Convert to pressure correction as

p̄′ =
λ′

Δtθ
p

(6.17)

4. Return to PETSC-SNES a preconditioned solution as[
p̄′ (or λ′)

v′ = v�′ − 1
ρ
∇
(
λ

♦

+ λ′
)]

(6.18)

Chapter 7

Numerical Examples

7.1 Vortex shedding behind a cylinder

As the first numerical test, we use vortex shedding flow behind a cylindrical ob-

sticle. The Reynolds number was set to Re = 100. Simulations were performed

on the fixed mesh, with 10,080 linear HEX elements (20,612 nodes), Figure 7.1.

We started with an initial solution adjusted to form well-posed initial guess by our

start-up procedure, and run the solution until the well-established Karman vortex

street established at dimensionless time t
�

≡ tν

d2
= 500, where d is the diame-

ter of the cylinder, while ν is kinematic viscosity of the fluid. By changing time

step, we observe time convergence, comparing the results of semi-implicit and

fully-implicit projection algorithms, with different pressure forms and parameter

θp. The parameter θ for advection and viscous operator was set to 1
2
, in all sim-

ulations. For Picard-based fully-implicit projection, we always start with initial

CFL=1, increasing time step with factor Δtn+1 = 1.1Δtn, until the desired value

is reached. For solutions with CFL> 50, the advection and viscous diffusion of

the irrotational part of velocity field (see eq.(5.39)) are ignored Ξt = 0.

7.1.1 Time convergence

The results of the time convergence study are shown in Figures 7.2-7.12.

We start with the semi-implicit algorithm, shown in Figure 7.2, showing ve-

locity magnitude fields for CFL numbers ranging from 0.44 to 60, when used with

45

46 CHAPTER 7. EXAMPLES

Fig. 7.1 : Computational mesh for vortex shedding test: 20,612 nodes and 10,080

HEX8 elements.

pressure-gradient form and θp = 1. It is apparent that the accuracy of the algo-

rithm starts to deteriorate at CFL≈ 10. When the maximum CFL exceeds 40-50,

the method becomes unstable. Switching from the pressure-gradient form to the

pressure-curvature form (Figure 7.3) shows only marginal improvement in accu-

racy, and no improvement in robustness.

Time convergence for fully-implicit algorithm is shown in Figures 7.4-7.7.

First, one can note a significant improvement in the accuracy of the solution, as

the eddies in the wake are decently resolved for CFL≈ 40. Moreover – the method

is unconditionally stable for any CFL numbers (provided that non-linear iterations

do converge1). It can be seen that with fully-implicit projection, we can run sim-

ulations with maximum CFL number in the excess of 500. Obviously, for these

very large time steps, the vortex shedding becomes under-resolved, which is why

the Karman vortex street associated with the Hopf bifurcation is not visible in Fig.

1For high CFL numbers (> 50), we found it necessary to turn off the advection and

diffusion of the irrotational part of the velocity field, Ξt = 0, as this correction appears

on the r.h.s. of the momentum equation and introduces a stiffness in the Picard-based

non-linear iteration loop. Without this correction term, the Picard-based algorithm con-

verges within 10-15 non-linear iterations (to get down to the relative error below the given

tolerance level of 10−8), regardless of the maximum CFL number in the flow.

7.1. VORTEX SHEDDING BEHIND A CYLINDER 47

7.4 under CFL > 400.

It is instructive to notice significant effect of the method accuracy on vortex

shedding. For the “pressure form” (original Chorin’s formulation), the Karman

street is not resolved for CFL numbers as low as 7, Figure 7.7.

In Figure 7.9, we show direct comparison of the results with the fully-implicit

(Picard-based) and the semi-implicit P2 projection algorithms. The improvement

in the accuracy and robustness is evident.

It is important to note that the accuracy of the semi-implicit method can be

improved by using the “predictor-corrector” (PC) strategy – within our Picard al-

gorithm – we just applied two iterations. We show the comparison in Figure 7.10.

The improvement in the vortex resolution is evident. However, this simple strat-

egy does not improve the robustness, as the method becomes unstable at CFL

numbers exceeding 40.

We shall note also, that even though the maximum CFL number is high – the

actual CFL number in the transient wake region is lower, as the mesh sizes are

larger in the wake zone, Figure 7.1. We demostrate this in Figures 7.11 and 7.12,

showing the CFL number distribution in the domain and in the wake zone. The

reason why we can get very decent eddy resolution with these high CFL numbers

is that, in general, the dynamic time scale of the resolved eddies is higher than

what is given by CFL=1. We can argue that one can get very decent vortex shed-

ding resolution with CFL≈ 10, when high-order time discretization is used. This

gives a significant boost in performance, especially accounting for the fact that at

this range of CFL numbers, the Picard non-linear iteration loop converges within

only 3-4 iterations.

48 CHAPTER 7. EXAMPLES

Fig. 7.2 : Convergence of velocity field for semi-implicit projection algorithm with

P (1) pressure form and θp = 1.

7.1. VORTEX SHEDDING BEHIND A CYLINDER 49

Fig. 7.3 : Convergence of velocity field for semi-implicit projection algorithm with

P (2) pressure form and θp = 1.

50 CHAPTER 7. EXAMPLES

Fig. 7.4 : Convergence of velocity field for fully-implicit projection algorithm with

P (1) pressure form and θp =
1
2
.

Fig. 7.5 : Convergence of velocity field for fully-implicit projection algorithm with

P (1) pressure form and θp = 1.

7.1. VORTEX SHEDDING BEHIND A CYLINDER 51

Fig. 7.6 : Convergence of velocity field for fully-implicit projection algorithm with

P (2) pressure form and θp = 1.

52 CHAPTER 7. EXAMPLES

Fig. 7.7 : Convergence of the velocity field for fully-implicit projection algorithm

with P (0) pressure form (Chorin method) and θp = 1/2.

7.1. VORTEX SHEDDING BEHIND A CYLINDER 53

Fig. 7.8 : Comparison of velocity fields for fully-implicit projections P (0) (Chorin)

and P (1), for different CFL numbers. For P (0), with used θ = 1/2, while for P (1)

– θ = 1.

54 CHAPTER 7. EXAMPLES

Fig. 7.9 : Comparison of semi-implicit (SI, θp = 1, P (1)) and fully-implicit pro-

jection (FI, θp = 1
2
, P (1)), on the example of vortex shedding behind a cylinder.

Velocity field for Re = 100.

7.1. VORTEX SHEDDING BEHIND A CYLINDER 55

Fig. 7.10 : Comparison of the predictor-corrector (PC) and semi-implicit (SI) pro-

jection algorithms, both with θp = 1, P (1)). Velocity field for Re = 100.

56 CHAPTER 7. EXAMPLES

Fig. 7.11 : A snapshot of CFL distribution for for simulation with fully-implicit

projection (θp = 1, P (1)), for the case with maximum CFL≈ 30.

7.1. VORTEX SHEDDING BEHIND A CYLINDER 57

Fig. 7.12 : A snapshot of CFL distribution for for simulation with fully-implicit

projection (θp = 1, P (1)), for the case with maximum CFL≈ 60.

58 CHAPTER 7. EXAMPLES

7.1.2 Non-linear iteration convergence

Convergence of non-linear iterative algorithms is defined by

lim
n→∞

||εn+1||

||εn||
r = C

(r)

(7.1)

The method is said to be of order r if there is a constant C
(r)
> 0, which is called

convergence rate. In the computational results presented below, we compute the

rates and order as:

Linear rate:

C
(r)

n
= ||εn+1||

||εn||
r

(7.2)

Order:

r = ln||εn+1||−ln||εn||
ln||εn||−ln||εn−1||

(7.3)

where ε
n

is an increment of the solution vector V
′

at iteration n.

In Figures 7.13-7.21, we demonstrate the performance of our Picard-based

non-linear solver. In Figure 7.13, we show convergence of relative errors for the

global solution vector, during the last 40 non-linear iterations (the last three to six

time steps of the transient). We re-scaled the global non-linear iteration counts to

get these curves overlapped. One can see clear rapid convergence of non-linear

iterations, essentially independently of the problem stiffness (CFL number) – all

high-CFL (> 50) solutions converge within 10-15 iterations to the chosen toler-

ance of 10−8. The small-CFL case (CFL= 7) converges even more rapidly, with

only 6 iterations.

Superb convergence properties can also be seen from Figure 7.14, which com-

pares non-linear iteration counts – local (per time step) and global (over the whole

transient). In general, with larger CFL, the solution time of 500 was reached

faster (with less total number of non-linear iterations). It must be noted though

that all simulations were started with CFL=1, and the time steps were gradually

increased to the specified values. For CFL=480, only a few last steps were done

with Δt = 12.8, and a significant non-linear iteration count is due to the time-

stepping start-up, which should explain why the total non-linear iteration count is

only 2.5-3 times smaller than for the case of CFL=60 (it is roughly 7 times smaller

7.1. VORTEX SHEDDING BEHIND A CYLINDER 59

�� �� �� �� �� �� �� �� ���

��
��

��
��

��
��

��
��

��
��

��
�	

��
�

��
��

��
��

��
�

� ��������	
���

� ��
�����	
����

� ��������	
�
���

� ��������	
�����

� ��
������	
�����

��
����
��

��������
�
��

�

�

�
�
��
�
��

��
��
�	

�
�

�
	
��

�
�
�

�
�
�

�
�

�
�
��
	
�
��
��
	
��
�
�

Fig. 7.13 : Convergence of non-linear iterations for different CFL numbers (last 40

non-linear iterations of the transient).

� ��� ��� ��� ��� ���

�

�

��

��

��

�

�
�
�
��
��
�
�
	

��
�
	�

��
�
�

�
�

�
�

��
�
	

��
�
�

�
��
�
�

����

�

����

����

����

����

�����

�����

�����

� ���	
���
����

� ���	����
�����

� ���	
���
���
��

� ���	����
��
���

� ���
	����
������

�
�
��

���
�
�
��	�

�
�
�	�

�
�
�	�

�
��
�

�
�

Fig. 7.14 : Convergence of non-linear iterations for different CFL numbers. Com-

parison of local (per time step) and global iteration counts.

60 CHAPTER 7. EXAMPLES

��
��

��
��

��
��

��
��

��
��

��
�	

��
�

��
��

��
�

���

���

���

���

���

���� ���� ���� ���� ���� ���� ���� ����

��
��

��
��

��
��

��
��

��
��

��
�	

��
�

��
��

��
�

	��� 	��� 	��� 	��� 	��� 	��� 	��� 	��� 	�
�

��
��

��
��

��
��

��
��

��
��

��
�	

��
�

��
��

��
�

��

�

�

	�

	�

��

��
��

��
��

��
��

��
��

��
��

��
�	

��
�

��
��

��
�

����

�

�

���
����	�
�

�
�
��
�
��

��
��
�	

�
�

�
	
��

�
�
�

�
�
�

�
�

�
�
��
	
�
��
��
	
��
�
�

� ����
��������

�

������

���� ��

����

�

�

�

� ��������������

�

�

�

�

� ����
�������
��

�

�

� �����������
���

Fig. 7.15 : Convergence of non-linear iterations for different CFL numbers (last 3

time steps of the transient t = 0, .., 500). The non-linear iteration count per time

step is shown in shadowed boxes. Tolerance is set to 10−8.

7.1. VORTEX SHEDDING BEHIND A CYLINDER 61

��
���

��
���

��
���

��
���

��
��

��
��

��
��

��
�	

��
�

��
��

��
��

��
��

��
��

��
�

���	� ����� ����� ����� ����� ����� �����

���	� ����� ����� ����� ����� ����� �����

���

���

��

��	

���

���

���

���

���

����

�

���
���	
���

�
�
��
�
��

��
��
�	

�
�

�
	
��

�
�
�

�
�
�

�
�

�
�
��
	
�
��
��
	
��
�
�

��
����������

������������

��

��	��	��	�

����	������	

��

�
��

	
��
��

�
�
�
�

�
	
�
�

�����	

���

���

���

���

��

���������

��
�
�	
���

���

Fig. 7.16 : Convergence of non-linear iterations for CFL=7 (last 3 time steps of the

transient t = 0, .., 500). The non-linear iteration count per time step is shown in

shadowed boxes. Tolerance is set to 10−12.

62 CHAPTER 7. EXAMPLES

compared to the case of CFL=7). Also, the tolerance level was intentionally cho-

sen to be tight. For production runs, it is reasonable to set tolerance around 10−5,

which, as one can see from Figure 7.13, can be reached with only three non-linear

iterations, for CFL< 10. Thus, running with ten times larger time step would

mean roughly 3 times faster solution.

In Figure 7.15 we show non-linear convergence history with total non-linear

iteration count, during the last three time steps of the transients, for a sequence of

CFL numbers 7, 60, 120 and 240. From the global non-linear iterations count, one

can see that large time step solutions are faster2, due to the fact that our non-linear

convergence is scalable – i.e., independent of CFL numbers.

The measurement of the convergence order and rate is shown in Figure 7.16.

We set non-linear tolerance to 10−12, to get a good asymptotic convergence prop-

erties. It can be seen that the method results in monotonic (asymptotically) linear

convergence with very high convergence rate3, < 0.5. All iteration starts with

very high-rate sublinear convergence, which slows down to the well-defined lin-

ear slope.

7.1.3 Comparison to SIMPLE and PISO (OpenFoam)

Next, we compare the perfomance of our algorithm to the well-established SIM-

PLE (Semi-Implicit Method for Pressure Linked Equations) [Pat80] and PISO

(Pressure Implicit with Splitting of Operators) algorithms [Iss85, OI01], as im-

plemented in OpenFoam open-source CFD toolbox [ope13]. Both SIMPLE and

PISO are considered as work-horse algorithms in a majority of currently available

commercial CFD codes.

To have a fair “apple-to-apple” comparison, we run simulations on exactly the

same mesh (see Figure 7.1), with exactly the same time steps. In OpenFoam, we

set time discretization based on the second-order Crank-Nicholson scheme, which

is an exact counterpart of our algorithm with θ = 1
2
. For space discretization, we

used the second-order van Leer scheme, which should be comparable to our space

discretization. In OpenFoam, all variables are collocated, with Rhie-Chow inter-

2The cost of each non-linear iteration is comparable, for any CFL number.
3At C

(r)
= 1, the method is non-convergent, at C

(r)
> 1 – it is disconvergent, and at

C
(r)

< 1 – it is convergent. The smaller C
(r)

, the faster is the convergence rate.

7.1. VORTEX SHEDDING BEHIND A CYLINDER 63

Fig. 7.17 : Convergence of velocity field for PISO algorithm.

polation [RC82] used to eliminate null-space degeneracy. This is different from

Hydra-TH strategy, with cell-centered flow variables and nodal representation of

the pressure field.

Furthermore, in OpenFoam, we coded computation of non-linear iteration er-

rors and convergence criteria to be exactly the same as in our Picard-iteration

algorithm, Section 5.1.5. For linear solves of momentum equations at the first

PISO step, we used PBiCG – Preconditioned Bi-Conjugate Gradient solver for

asymmetric matrices (vs. PETSC-based ILU-FGMRES in Hydra-TH), while for

solving pressure equation, we used GAMG – generalised Geometric-Algebraic

Multi-Grid solver (in Hydra-TH – PETSC/ML-based). All linear tolerances are

set to 10−12.

First, we show convergence of velocity field, for SIMPLE and PISO algo-

64 CHAPTER 7. EXAMPLES

Fig. 7.18 : Comparison of velocity fields for SIMPLE vs. PISO solution, for dif-

ferent CFL numbers.

7.1. VORTEX SHEDDING BEHIND A CYLINDER 65

Fig. 7.19 : Comparison of velocity fields for fully-implicit projection vs. PISO

solution, for different CFL numbers.

66 CHAPTER 7. EXAMPLES

rithms, in Figures 7.17 and 7.18. At CFL=7, there is very noticeable diffusion of

vortex street behind the cylinder. At CFL> 30, the diffusion is so significant, that

the Karman street cannot be resolved at all (note that PISO algorithm is slightly

less diffusive than SIMPLE). With projection algorithm, vortex shedding is rea-

sonably resolved even at CFL> 120. Direct comparison of PISO to projection-

based algorithm, for different time steps (CFL number), is shown in Figure 7.19.

Next, we present the performance of the PISO vs. fully-implicit projection,

as preconditioners of Picard iterations, in Figures 7.20 and 7.21. First, one can

notice oscillatory (non-monotonic) convergence of PISO at the begining of itera-

tions. Eventually, the method converge linearly (as expected), but with very slow

convergence rate, C
(1)

→ 1. It takes approximately five times more iterations than

in the case of fully-implicit projection, for CFL=7; and ten times more for the case

of CFL=60. Each iteration of PISO though is cheaper, as after the first iteration,

it replaces the full implicit momentum solves with cheap lagged (“splitted”) di-

agonal solves, which is obviously very impactful (detrimental) on the non-linear

convergence of the algorithm. Moreover, the convergence is non-scalable, i.e.

with higher CFL, it requires much more non-linear iterations to reach the same

tolerance level.

It must be noted that in most implimentations of PISO, the algorithm is used

in an operator-splitting/predictor-corrector manner, running only a few (2-3) iter-

ations, without any attempt to achieve tight nonlinear convergence. This would

bring non-linear tolerance to the level of 10−2, for the considered here problem

(vs. ≈ 10−2, for Hydra-TH). If the non-linearity of the problem is very signifi-

cant (as exhibited in many multiphase flow problems), the performance of PISO

(and SIMPLE-based algorithms) is extremely poor, as exhibited by the evidence

of practical application for all IPSA-derived [Spa83] multi-fluid solvers.

Table 7.1 : Performance of the algorithms, for vortex shedding problem
METHOD CFL CPU-time, sec

PISO 7 11,750

FI-projection 7 6,584

PISO 60 3,208

FI-projection 60 1,249

Finally, we show CPU-time comparison in Table 7.1. While not exactly a fair

7.1. VORTEX SHEDDING BEHIND A CYLINDER 67

��
��

��
��

��
��

��
��

��
��

��
�	

��
�

��
��

��
�

���

���

���

���

���

��	��� ��	�
� ��	��� ��	��� ��	��� ��	���

��
��

��
��

��
��

��
��

��
��

��
�	

��
�

��
��

��
�

���� ���� ���� ���� ���� ���� ���� ����

��
��

��
��

��
��

��
��

��
��

��
�	

��
�

��
��

��
�

	���� 	���� 	���� 	�
��

��
��

��
��

��
��

��
��

��
��

��
�	

��
�

��
��

��
�

��������	
���

������

��������	
���

��������

�

�

���
��������

�
�
��
�
��

��
��
�	

�
�

�
	
��

�
�
�

�
�
�

�
�

�
�
��
	
�
��
��
	
��
�
�

� ����������� !

�"�

������

�#��$#�%$

������&� ��$�

�$���$#�

�

�

�

� ����������� !

�$��

�

�

�

� ����&������&�!

�

�

� ����&������&�!

Fig. 7.20 : Comparison of the convergence of non-linear iterations – Hydra-TH’s

Picard algorithm vs. OpenFoam’s PISO algorithm. Last 3 time steps of the tran-

sient t = 0, .., 500. The non-linear iteration count per time step is shown in shad-

owed boxes.

68 CHAPTER 7. EXAMPLES

���

���

���

���

���

���

����� ����� ����� ����� �����

������ ������ ������ ������ ����	� ������

���

���

���

���

���

���

���

���

���

���

���

�	
� �		� �		� �	�� �	�� ���� ���� ����

���

���

���

���

���

���

����� �
��� �
��� �
���

���

���

���

���

��	

���

���

���

���

��������	
���

������

��������	
���

��������

�

�

���
��������

�
��
�
�
��
�
	
�

�
��

�
�
�
�
��
�
��

�
�

��
�

� ����������� !

�"�

������

�#��$#�%$

������&� ��$�

�$���$#�

�

�

�

� ����������� !

�$��

�

�

�

� ����&������&�!

���'��(���

)�'��(���

)�'��(���

�

�

� ����&������&�!

���'��(���

Fig. 7.21 : Comparison of the linear convergence rates for non-linear iterations –

Hydra-TH’s Picard algorithm vs. OpenFoam’s PISO algorithm. Last 3 time steps

of the transient t = 0, .., 500. The non-linear iteration count per time step is shown

in shadowed boxes.

7.1. VORTEX SHEDDING BEHIND A CYLINDER 69

apple-to-apple comparison (as different linear solvers and implementations are

used), this nevertheless should give a decent estimate on expected performance

of the solution algorithms. The tests were run on Mac laptop (Darwin, 11.4.2

Lion OS), with two-core i7 2.66 GHz processor. As one can see, for CFL=7, the

projection-based algorithm in Hydra-TH is approximately twice as fast, compared

to the PISO-based OpenFoam solution. For larger CFL=60, Hydra-TH is 2.5-3

times faster.

70 CHAPTER 7. EXAMPLES

Fig. 7.22 : Steady-state solution. Ra = 104, Pr = 0.71. Temperature field (color

map and solid isolines) and contours of vorticity (dashed isolines).

7.2 Natural Convection in a Square Cavity with Os-

cillatory Temperature Boundary Conditions

In the next test, we consider natural convection in a square cavity, with Dirichlet

(no-slip, temperature-specified) boundary conditions at the left and right wall,

and adiabatic no-slip horizontal walls. Steady-state solutions for this problem are

well-documented by de Vahl Davis in [dJ83, de 83]. Steady-state temperature and

vorticity field solutions are shown in Figure 7.22.

We modified this test to make it transient as follows. Temperature at the right

7.2. NATURAL CONVECTION TEST 71

� �� �� �� �� �� �� �� 	�

�
��

�
��

�
��

�
��

�
�� ���������

�
��	
�

�

�

�
�
��
��

�
��
��
�
	

�
��
��
��

����

�

��

�
����

���������

Fig. 7.23 : On the formulation of the oscillating-temperature natural convection

test.

72 CHAPTER 7. EXAMPLES

wall is fixed, Trgt = 0. The temperature at the left boundary is varied in time as

T (t) =
1

2

(
sin

(
t

ω
T

π −
π

2

)
+ 1

)
(7.4)

where ω
T

is the period of oscillations, Fig.7.23. Simulations are started with mo-

tionless fluid at Tinit = 0. At the peak of left-wall temperature, Ra = 104. Prandtl

number is set to Pr = 0.71. Grid resolution is set to Δh = 1
320

, providing fine-

enough resolution, allowing to focus on time discretization errors. For all simula-

tions presented, we set θ = 1
2

for advection, diffusion and body-force operators.

The parameter θp was varied from 1
2

to 1, as well as pressure forms (P (0), P (1) and

P (2)). Computational results are summarized in Figures 7.24-7.30.

Figures 7.24 and 7.25 depict time history of temperature and vorticity fields,

for two solution algorithms – semi-implicit, and fully-implicit, with fixed time

step of Δt = 1. This corresponds to maximum CFL=87, Foν=863 and Foα=1215,

were Courant and Fourier (viscous and thermal) numbers are defined as

CFL =
|v|max Δt

Δh

and
Foν = νΔt

Δh2

Foα = αΔt
Δh2

respectively.

Figure 7.26 is a comparison of semi-implicit and fully-implicit projection for

vorticity field at t = 10. It can be clearly seen that the fully-implicit algorithm

is superior to the semi-implicit, showing highly-accurate solutions for very large

time steps/(CFL and Fourier numbers). Moreover, when CFL and Fo numbers

are high, the semi-implicit algorithm results in so-called “projection boundary

layers”, clearly seen by plotting isolines of the vorticity field. These artifacts are

the results of ignoring advection/diffusion of irrotational part of velocity field, Ξt

(see eq.(5.39)), in the semi-implicit algorithm. While not affecting directly the

convergence rate of the algorithm (see Figures 7.27-7.30), they are significant and

visible near domain boundaries. In the fully-implicit algorithm, these terms are

accounted for during non-linear iteration loop. We performed fully-implicit simu-

lations were these terms are ignored, and as one can see from Figure 7.26 (second

row) – the “projection boundary layers” are present.

7.2. NATURAL CONVECTION TEST 73

Fig. 7.24 : Dynamics of temperature (color-map and thick solid isolines) and vor-

ticity magnitude (thin dashed isolines), using the semi-implicit projection (pres-

sure gradient form, P (1), θp =
1
2
), with time step Δt = 1.

74 CHAPTER 7. EXAMPLES

Fig. 7.25 : Dynamics of temperature (color-map and thick solid isolines) and

vorticity magnitude (thin dashed isolines), using the fully-implicit (Picard-based,

pressure curvature form, P (2) θp =
1
2
) projection, with time step Δt = 1.

7.2. NATURAL CONVECTION TEST 75

Fig. 7.26 : Time convergence for vorticity field, comparing semi-implicit (pressure

gradient form, P (1), θp = 1
2
) and fully-implicit algorithms (pressure curvature

forms, P (2), θp =
3
5
), for time t = 10.

76 CHAPTER 7. EXAMPLES

��
��

��
��

��
�

��
��

��
��

��
��

��
��

��
�	

��
�

��
��

��
��

�����

�����

����� 			�
�

	
��

���
	�

�
�����

	���

���
	�

�
�����

	
��

���
	�

�
�����

	
��

���
	�

�
���

	
��

���
	�

�
���

	
��

���
	�

�
�����

	
��

���
	�

�
�����

	
��

���
	�

�
������	

�
	�������

	
��

���
	�

�
�����

����

�
!
"#�
��

�

�
�
��
�
�
�
�

�

�
!
"#�
� �

Fig. 7.27 : Time convergence of L2-norm of errors for kinetic energy.

7.2. NATURAL CONVECTION TEST 77

��
��

��
��

��
�

��
��

��
��

��
��

��
��

��
��

�����

�����

����
��	
�

���
��

�����

��	
�
���
��

�����

��	
�
���
��

�����

��	
�
���
��

���

��	
�
���
��

�����

��	
�
���
��

�����

���
�
���
��

�����

��	
�
���
��

�������

�
��������

��	
�
���
��

���

���
� �
��

�

�
�
��
�
�
�
�

�

���
� �
���

Fig. 7.28 : Time convergence of L2-norm of errors for pressure.

78 CHAPTER 7. EXAMPLES

��
��

��
��

��
�

��
��

��
��

��
��

��
��

��
�	

��
�

��
��

�����

�����

���

��	
�
��

��

�
����

��	
�
��

��

�
����

��	
�
��

��

�
����

��	
�
��

��

�
��

��	
�
��

��

�
����

��	
�
��

��

�
����

���
�
��

��

�
����

��	
�
��

��

�
����
��

�
��������

��	
�
��

��

�
��

�����

���
 !�
��

�

�
�
��
�
�
�
�

�

���
 !�
���

Fig. 7.29 : Time convergence of L2-norm of errors for Lagrange multiplier.

7.2. NATURAL CONVECTION TEST 79

��
��

��
��

��
�

��
��

��
��

��
��

��
��

��
�	

��
�

��
��

�����

�����

���	

�
��

���
��

�
�����

����

���
��

�
�����

�
��

���
��

�
�����

�
��

���
��

�
���

�
��

���
��

�
�����

�
��

���
��

�
�����

�
��

���
��

�
�����

�
��

���
��

�
�������

�
��������

�
��

���
��

�
���

�����

�
�
 !�
��

�

�
�
��
�
�
�
�

�

�
�
 !�
�"�

Fig. 7.30 : Time convergence of L2-norm of errors for temperature.

80 CHAPTER 7. EXAMPLES

Finally, we show the measured convergence rates for velocity, pressure, La-

grange multiplier and temperature, in Figures 7.27-7.30. All semi-implicit method

solutions are showing asymptotically the 1st-order convergence, due to operator

splitting errors on the solution slopes when computing advection operator (being

“frozen” at tn). In the fully-implicit algorithm, we removed these errors, result-

ing in clear the 2nd-order convergence for velocity and temperature fields, Figures

7.27 and 7.30. Pressure however is always only 1st-order accurate, Figure 7.28,

regardless of the used pressure form. Under the same θp, the pressure curvature

form P (2) is generally more accurate than the pressure gradient form P (1). Impor-

tantly to note here, that the Lagrange multiplier evolves with high-order accuracy

in time, clearly exhibiting the 2nd (for pressure gradient form, P (1)) and the 3rd

(for pressure curvature form, P (2)) order convergence rates, Figure 7.29. This

is the key to have the 2nd convergence for velocity field. As one can see – in the

case of “pressure form” (the original Chorin’s projection algorithm), the Lagrange

multiplier is only 1st order accurate, resulting in the 1st order accurate velocity and

temperature.

It is interesting to note that just applying two Picard iterations in a “predictor-

corrector” (PC) manner – is sufficient to get the 2nd order convergence for veloc-

ity and temperature, Figures 7.27 and 7.30. This does remove/(reduce) operator

splitting errors in treatment of advection operator. It will not however ensure un-

conditionally stable solution. Also, “projection boundary layers” are not removed,

see Figure 7.31.

An example of the non-linear iteration convergence is shown in Figures 7.32

and 7.33, for P (1), θp =
1
2
. The errors are rapidly dropped to the chosen tolerance

level of 10−8, within 10 iterations. Convergence rate is asymptotically linear, with

very high convergence rates ≈ 0.12 	 1, Figure 7.33.

7.2. NATURAL CONVECTION TEST 81

Fig. 7.31 : Time convergence for vorticity field, comparing predictor-corrector

(PC) and fully-implicit algorithms (both with pressure curvature forms, P (2), θp =
3
5
), for time t = 10.

82 CHAPTER 7. EXAMPLES

� � �� �� �� �� �� �� �� �� ��

��
��

��
�	

��
�

��
��

��
��

��
��

��
��

��
��

��
��

��
�

� � � � 	 ��

�

�

�

�

	

��

��

��
����

�

��
�
�	
���
���
����
�����
����
	�����
��������������
�

�

�

����

�
	���	�����������
	��
�	�����������������

Fig. 7.32 : Convergence of non-linear iterations for the case of fully-implicit algo-

rithm with P (1), θp =
1
2
, with time steps Δt = 2× 5.

� �� �� �� �� ��

���

���

��	

��

���

���

���

���

������

�
�
�
��
��
�
	

�

�

�

�

�

�
����

	�
���

�
�
�
�

�
��
�
�
	

����

����

����

����

���

����

����

����

����

���

����

�����

��
	
��

��

�
�

Fig. 7.33 : Convergence order and rate of non-linear iterations.

Chapter 8

Concluding Remarks

T
HE main technical contribution of the present report is the formulation of the

fully-implicit projection algorithm for implementation in Hydra-TH code. We

discussed definition of non-linear residual vector, as well as the strategy for ef-

ficient preconditioning of linear (GMRES) solver, utilizing the variation of the

currently-available in Hydra-TH semi-implicit projection algorithm. While fo-

cusing here on single-phase flow formulation, the basic ideas of the fully-implicit

projection should be straightforwardly extandable to multi-fluid flows. These ex-

tensions will be presented in future.

83

This Page is Intentionally Left Blank

APPENDICES

85

This Page is Intentionally Left Blank

Appendix A

Extension to Compressible Flows

I
N this appendix, we discuss how to extend the fully-implicit projection al-

gorithm to fully-compressible flows, along the lines of Harlow and Amsden

[HA68, HA71, HA75b, HA75a] all-speed “Implicit Continuous-fluid Eulerian

(ICE)” algorithm.

The governing equations are mass,

∂ρ

∂t
+∇ · (ρv) = 0 (A.1)

momentum,

∂ρv

∂t
+∇ · (ρv ⊗ v) = −∇P + S

v
(A.2)

and energy conservation (written in terms of specific internal energy, u):

∂ρu

∂t
+∇ · (ρuv) = −P∇ · v + Su (A.3)

complemented with a given equation of state:

ρ (P, u) (A.4)

Let’s consider decomposition of an arbitrary momentum field along the lines

of Helmholtz decomposition:

ρv� ≡ ρv +∇λ (A.5)

87

88 APPENDIX A. EXTENSION TO COMPRESSIBLE FLOWS

We splitted a momentum vector into the “divergence-constrained”1 and the “curl-

free” parts. Now, because of the compressibility, these are not generally orthogo-

nal, and the level of “skeweness” is defined by the Mach number – the lower it is

– the more effective the considered “projection-like” procedure is. The applica-

tions of interest here involve relatively low Mach number flows. For high-Mach

flows M > 1, the conservative-variable (density-based) algorithms are more cost-

effective.

Next, we can apply similar decomposition of energy flux vector field,

ρuv� = ρuv + u∇λ (A.6)

To get equation for Lagrange multiplier, we first take divergence of eq.(A.5):

∇2λ = ∇ · (ρv�)−∇ · (ρv) (A.7)

and use mass conservation for “divergence constraint” (dilation):

∇2λ = ∇ · (ρv�) + ∂tρ (A.8)

Next, we can use equation of state for variable change:

∂tρ = ∂tP
∂ρ

∂P

∣∣∣∣
u

+ ∂tu
∂ρ

∂u

∣∣∣∣
P

(A.9)

Thus,

∇2λ = ∇ · (ρv�) +
∂ρ

∂P

∣∣∣∣
u

∂tP +
∂ρ

∂u

∣∣∣∣
P

∂tu (A.10)

This equation ensures mass conservation. As our next step, apply divergence to

eq.(A.6), leading to

∇ · (u∇λ) = ∇ · (ρuv�)− ∇ · (ρuv)︸ ︷︷ ︸
−∂tρu−P∇·v+Su

(A.11)

and

∇ · (u∇λ) = ∇ · (ρuv�) +
(
ρ+ u ∂ρ

∂u

∣∣
P

)
∂tu+ u ∂ρ

∂P

∣∣
u
∂tP+

+P∇ · v − Su

(A.12)

1To make this distinct from “divergence-free” or solenoidal.

89

From eq.(A.5)

v = v� −
1

ρ
∇λ (A.13)

which leads to

∇ · (u∇λ) + P∇ ·
(

1
ρ
∇λ
)
= ∇ · (ρuv�) + P∇ · v� +

(
ρ+ u ∂ρ

∂u

∣∣
P

)
∂tu+

+u ∂ρ
∂P

∣∣
u
∂tP − Su

(A.14)

Next, use eq.(A.10) to eliminate ∂
t
u:

∂tu =
1

∂ρ
∂u

∣∣
P

[
∇2λ−∇ · (ρv�)−

∂ρ

∂P

∣∣∣∣
u

∂tP

]
(A.15)

and

∇ · (u∇λ) + P∇ ·
(

1
ρ
∇λ
)
= ∇ · (ρuv�) + P∇ · v�+

+
ρ+ u ∂ρ

∂u

∣∣
P

∂ρ
∂u

∣∣
P︸ ︷︷ ︸

û

[
∇2λ−∇ · (ρv�)− ∂ρ

∂P

∣∣
u
∂tP
]
+ u ∂ρ

∂P

∣∣
u
∂tP − Su

(A.16)

or

∂ρ

∂P

∣∣∣∣
u

(u
û
− 1
)
∂tP −

1

û

(
∇ · (u∇λ) + P∇ ·

(
1

ρ
∇λ

))
+∇2λ =

= ∇ · (ρv�)−
1

û
(∇ · (ρuv�) + P∇ · v� − Su)

(A.17)

where the terms in boxes represent compressibility effects. Using the difinition of

sound speed

c =

√√√√ 1
∂ρ
∂P

∣∣
u

(
1−

P

ρ2
∂ρ

∂u

∣∣∣∣
P

)
(A.18)

and

û = u+
ρ

∂ρ
∂u

∣∣
P

(A.19)

90 APPENDIX A. EXTENSION TO COMPRESSIBLE FLOWS

we can write the following Pressure-Helmholtz equation (PHE) for pressure/Lagrange

multiplier:

1

χc2
∂

t
P −

1

û

(
∇ · (u∇λ) + P∇ ·

(
1

ρ
∇λ

))
+∇2λ =

= ∇ · (ρv�)−
1

û
(∇ · (ρuv�) + P∇ · v� − Su)

(A.20)

where

χ =
1 + u

ρ
∂ρ
∂u

∣∣
P

P
ρ2

∂ρ
∂u

∣∣
P
− 1

(A.21)

Importantly, this equation incorporates both mass and energy conservation

during the “skewed projection” procedure applied to the momentum vector field.

The major challenging issues are related to the details of discretization of the

“compressibility” terms (in boxes) of the PHE equation (A.20).

Appendix B

Cartesian Vector Calculus

G
IVEN two Cartesian vectors a =

{
a

x
, a

y
, a

z

}T

and b =
{
b
x
, b

y
, b

z

}T

, the dot

product is defined as

a · b = axbx + ayby + azbz = a
k
b
k

(B.1)

The dyadic product is denoted as [Ari]

ab = a⊗ b =

⎡
⎣ axbx axby axbz
aybx ayby aybz
a

z
b
x

a
z
b
y

a
z
b
z

⎤
⎦ = a

k
b
l

(B.2)

Spatial derivatives are denoted as

∇ =

{
∂

∂x
,
∂

∂y
,
∂

∂z

}T

=
{
∂

x
, ∂

y
, ∂

z

}T

= ∂
j

(B.3)

Thus, the gradient of an arbitrary scalar ϕ is defined as

∇ϕ =

{
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

}T

=
{
∂xϕ, ∂yϕ, ∂zϕ

}T

= ∂
j
ϕ (B.4)

and, accordingly, dot product of a vector and a gradient of a scalar is

a · ∇ϕ = a
x

∂ϕ

∂x
+ a

y

∂ϕ

∂y
+ a

z

∂ϕ

∂z
(B.5)

Laplacian of an arbitrary scalar is defined as

∇ · ∇ϕ = ∇
2

ϕ = Δϕ =
∂

2
ϕ

∂x2 +
∂

2
ϕ

∂y2 +
∂

2
ϕ

∂z2 = ∂
2

k
ϕ (B.6)

91

92 APPENDIX B. CARTESIAN VECTOR CALCULUS

Divergence of a vector is defined as

∇ · a =
∂ax

∂x
+
∂ay

∂y
+
∂az

∂z
(B.7)

Gradient of an arbitrary vector is a tensor, defined as

∇a =

⎡
⎢⎢⎢⎢⎢⎣

∂ax
∂x

∂ax
∂y

∂ax
∂z

∂ay
∂x

∂ay
∂y

∂ay
∂z

∂az
∂x

∂az
∂y

∂az
∂z

⎤
⎥⎥⎥⎥⎥⎦ (B.8)

and its transpose:

∇a
T

=

⎡
⎢⎢⎢⎢⎢⎣

∂ax
∂x

∂ay
∂x

∂ay
∂x

∂ax
∂y

∂ay
∂y

∂ay
∂y

∂ax
∂z

∂ay
∂z

∂ay
∂z

⎤
⎥⎥⎥⎥⎥⎦ (B.9)

Scalar product of a vector and divergence of a vector is a vector:

a · ∇b =

⎧⎨
⎩

ax · ∇bx
a

y
· ∇b

y

az · ∇bz

⎫⎬
⎭ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
x

∂bx
∂x

+ a
y

∂bx
∂y

+ a
z

∂bx
∂z

ax

∂by
∂x

+ ay

∂by
∂y

+ az

∂by
∂z

a
x

∂bz
∂x

+ a
y

∂bz
∂y

+ a
z

∂bz
∂z

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(B.10)

Divergence of a dyadic product of two vectors is defined as

∇ · (ab) = ∇ · (a⊗ b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂
∂x

(a
x
b
x
) + ∂

∂y

(
a

x
b
y

)
+ ∂

∂z
(a

x
b
z
)

∂
∂x

(
a

y
b
x

)
+ ∂

∂y

(
a

y
b
y

)
+ ∂

∂z

(
a

y
b
z

)
∂
∂x

(a
z
b
x
) + ∂

∂y

(
a

z
b
y

)
+ ∂

∂z
(a

z
b
z
)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(B.11)

Bibliography

[ABC00] Ann S. Almgren, John B. Bell, and William Y. Crutchfield. Approx-

imate projection methods: Part i. inviscid analysis. SIAM Journal on

Scientific Computing, 22(4):1139–1159, 2000.

[ABCH93] Ann S. Almgren, John B. Bell, Phillip Colella, and Louis H Howell.

An adaptive projection method for the incompressible euler equa-

tions. In Eleventh AIAA Computational Fluid Dynamics Conference,

pages 530–539. AIAA, 1993.

[ABS96] Ann S. Almgren, John B. Bell, and William G. Szymcyzk. A numer-

ical method for the incompressible navier-stokes equations based on

an approximate projection. SIAM Journal for Scientific Computing,

17(2):358–369, March 1996.

[Ari] R. Aris. Vectors, Tensors, and the Basic Equations of Fluid Mechan-

ics. Dover Publications, Inc., New York.

[BBE+04] Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp,

Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes,

Barry F. Smith, and Hong Zhang. PETSc users manual. Technical

Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory,

2004.

[BCG89] John B. Bell, Philip Colella, and Harland M. Glaz. A second-order

projection method for the incompressible navier-stokes equations.

Journal of Computational Physics, 85:257–283, 1989.

[BCM01] David L. Brown, R. Cortez, and Michael L. Minion. Accurate

projection methods for the incompressible navier-stokes equations.

Journal of Computational Physics, 168:464–499, 2001.

93

94 BIBLIOGRAPHY

[BM95] David L. Brown and Michael L. Minion. Performance of under-

resolved two-dimensional incompressible flow simulations. Journal

of Computational Physics, 122:165–183, 1995.

[Cho68] Alexandre Joel Chorin. Numerical solution of the Navier-Stokes

equations. Mathematics of Computations, 22:745–762, 1968.

[Cho69] Alexandre Joel Chorin. On the convergence of discrete approxima-

tions to the Navier-Stokes equations. Mathematics of Computations,

57:341–353, 1969.

[Chr11] M. A. Christon. Hydra-th theory manual. Technical Report LA-

UR-11-05387, Los Alamos National Laboratory, Los Alamos, New

Mexico, September 2011.

[de 83] G. de Vahl Davis. Natural convection of air in a square cavity: a

bench mark numerical solution. International Journal for Numerical

Methods in Fluids, 3:249–264, 1983.

[dJ83] G. de Vahl Davis and I. P. Jones. Natural convection in a square

cavity: a comparison exercise. International Journal for Numerical

Methods in Fluids, 3:227–248, 1983.

[GC90] Philip M. Gresho and Stevens T. Chan. On the theory of semi-

implicit projection methods for viscous incompressible flow and its

implementation via a finite element method that also introduces a

nearly consistent mass matrix. part 2: Implementation. International

Journal for Numerical Methods in Fluids, 11:621–659, 1990.

[GC96] Philip M. Gresho and Stevens T. Chan. Projection 2 goes turbulent –

and fully implicit. preprint International Journal for Computational

Fluid Dynamics, March 1996. (LLNL UCRL-JC-123727).

[GCCH95] Philip M. Gresho, Stevens T. Chan, Mark A. Christon, and Allen C.

Hindmarsh. A little more on stabilized q1q1 for transient viscous

incompressible flow. International Journal for Numerical Methods

in Fluids, 21:837–856, 1995.

[GQ97] J.-L. Guermond and L. Quartapelle. Calculation of incompressible

viscous flow by an unconditionally stable projection fem. Journal of

Computational Physics, 132:12–23, 1997.

BIBLIOGRAPHY 95

[GQ98a] Jean-Luc Guermond and L. Quartapelle. On stability and conver-

gence of projection methods based on pressure poisson equation.

International Journal for Numerical Methods in Fluids, 26:1039–

1053, 1998.

[GQ98b] Jean-Luc Guermond and L. Quartapelle. On the approximation of

the unsteady navier-stokes equations by finite element projection

methods. Numerische Mathematik, 80:207–238, 1998.

[Gre90] Philip M. Gresho. On the theory of semi-implicit projection methods

for viscous incompressible flow and its implementation via a finite

element method that also introduces a nearly consistent mass matrix.

part 1: Theory. International Journal for Numerical Methods in

Fluids, 11:587–620, 1990.

[Gue96] Jean-Luc Guermond. Some implementations of projection methods

for navier-stokes equations. Mathematical Modelling and Numerical

Analysis, 30(5):637–667, 1996.

[Gue97] Jean-Luc Guermond. A convergence result for the approximation of

the navier-stokes equations by an incremental projection method. C.

R. Acad. Sci. Paris, 325:1329–1332, 1997.

[HA68] F. H. Harlow and A. A. Amsden. Numerical calculation of almost

incompressible flow. Journal of Computational Physics, 3:80–93,

1968.

[HA71] F. H. Harlow and A. A. Amsden. A numerical fluid dynamics calcu-

lation method for all flow speeds. Journal of Computational Physics,

8:197–213, 1971.

[HA75a] F. H. Harlow and A. A. Amsden. Flow of interpenetrating material

phases. Journal of Computational Physics, 18:440–464, 1975.

[HA75b] F. H. Harlow and A. A. Amsden. Numerical calculation of multi-

phase fluid flow. Journal of Computational Physics, 17:19–52, 1975.

[HN81] C. Hirt and B. Nichols. Volume of fluid (VOF) method for the dy-

namics of free surfaces. Journal of Computational Physics, 39:201,

1981.

96 BIBLIOGRAPHY

[Iss85] R. I. Issa. Solution of the Implicitely Discretized Fluid Flow Equa-

tions by Operator-Splitting. Journal of Computational Physics,

62:40–65, 1985.

[Kan86] J. Van Kan. A second-order accurate pressure-correction scheme

for viscous incompressible flow. SIAM Journal for Scientific and

Statistical Computing, 7:870–891, 1986.

[KCMM03] D.A. Knoll, L. Chacon, L.G. Margolin, and V.A. Mousseau. On

balanced approximations for time integration of multiple time scales

systems. Journal of Computational Physics, 185:583–611, 2003.

[KK04] D. A. Knoll and D. Keyes. Jacobian-free Newton-Krylov methods:

A survey of approaches and applications. Journal of Computational

Physics, 193:357–397, 2004.

[KMCR05] D.A. Knoll, V.A. Mousseau, L. Chacon, and J. M. Reisner. Jacobian-

free Newton-Krylov methods for the accurate time integration of

stiff wave systems. SIAM Journal of Scientific Computing, 25:213–

230, 2005.

[KMK96] D.A. Knoll, P. R. McHugh, and D. E. Keyes. Newton-Krylov meth-

ods for low-Mach-number compressible combussion. AIAA Journal,

34(5):961, 1996.

[KNW99] Omar M. Knio, Habib N. Najm, and Peter S. Wyckoff. A semi-

implicit numerical scheme for reacting flow. ii. stiff operator-split

formulation. pre-print submitted to Journal of Computational

Physics, 1999.

[KR00] D. A. Knoll and W. J. Rider. A multigrid preconditioned Newton-

Krylov method. SIAM Journal of Scientific Computing, 21:691–710,

2000.

[MB97] Michael L. Minion and David L. Brown. Performance of under-

resoloved two-dimensional incompressible flow simulations, ii.

Journal of Computational Physics, 138:734–765, 1997.

[Min96] Michael L. Minion. A projection method for locally refined grids.

Journal of Computational Physics, 127:158–178, 1996.

BIBLIOGRAPHY 97

[NC12] R.R. Nourgaliev and M. A. Christon. Solution algorithms for

multi-fluid-flow averaged equations. Technical Report INL/EXT-

12-27187, Idaho National Laboratory, Idaho Falls, Idaho, September

2012.

[OI01] P. J. Oliveira and R. I. Issa. An improved PISO algorithm for the

computation of buoyancy-driven flows. Numerical Heat Transfer,

Part B, 40:473–493, 2001.

[ope13] OpenFoam Web page: The open source CFD toolbox, 2013.

http://www.openfoam.com.

[PAB+97] Elbridge G. Puckett, Ann S. Almgren, John B. Bell, Daniel L. Mar-

cus, and William J. Rider. A high-order projection method for track-

ing fluid interfaces in variable density incompressible flows. Journal

of Computational Physics, 130:269–282, 1997.

[Pat80] S. Patankar. Numerical Heat Transfer and Fluid Flow. Taylor &

Francis, 1980.

[Per93] J. Blair Perot. An analyis of the fractional step method. Journal of

Computational Physics, 108:51–58, 1993.

[PS72] S.V. Patankar and D.B. Spalding. A calculation procedure for heat,

mass and momentum transfer in three-dimensional parabolic flows.

International Journal of Heat Mass Transfer, 15:1787–1806, 1972.

[RC82] C. M. Rhie and W. L. Chow. Numerical study of the turbulent flow

past an isolated airfoil with trailing edge separation. AIAA Journal,

21(11):1525–32, 1982.

[Rid94a] William J. Rider. Filtering nonsolenoidal modes in numerical solu-

tions of incompressible flows. Technical Report LA-UR-3014, Los

Alamos National Laboratory, Los Alamos, New Mexico, September

1994.

[Rid94b] William J. Rider. The robust formulation of approximate projection

methods for incompressible flows. Technical Report LA-UR-3015,

Los Alamos National Laboratory, 1994.

98 BIBLIOGRAPHY

[Rid95] William J. Rider. Approximate projection methods for incompress-

ible flow: implementation, variants and robustness. Technical Report

LA-UR-2000, Los Alamos National Laboratory, Los Alamos, New

Mexico, July 1995.

[RKM+95] W. J. Rider, D. B. Kothe, S. J. Mosso, J. H. Cerutti, and J. I.

Hochstein. Accurate solution algorithms for incompressible mul-

tiphase flows. Technical Report AIAA-95-0699, AIAA, Reno,

Nevada, January 1995.

[SA92] P. R. Spalart and S. R. Allmaras. A one-equation turbulence model

for aerodynamic flows. In AIAA-92-0439, Reno, Nevada, January

1992. AIAA 30th Aerospace Science Meeting and Exhibit.

[SAB+99] M. Sussman, A.S. Almgren, J.B. Bell, P. Colella, and L.H. Howell.

An adaptive level set approach for incompressible two-phase flows.

Journal of Computational Physics, 148:81–124, 1999.

[Set99] J.A. Sethian. Level set methods and fast marching methods: Evolv-

ing interfaces in computational geometry, fluid mechanics, computer

vision, and material science. Cambridge University Press, 1999.

[Spa83] D.B.. Spalding. Development in the IPSA procedure for numerical

computation of multiphase-flow phenomena with interfacial slip, un-

equal temperatures. In T.M. Shih, editor, Numerical Methodologies

in Heat Transfer, Proc. Second National Symposium, pages 421–436.

Hemisphere, 1983.

[SS86] Y. Saad and M.H. Schultz. GMRES: a Generalized Minimal Resid-

ual algorithm for solving linear systems. SIAM Journal of Science

and Statistical Computing, 7:856, 1986.

[Wet98] Brian B. Wetton. Error analysis of pressure increment schemes. sub-

mitted to SINUM, April 1998.

This Page is Intentionally Left Blank

This Page is Intentionally Left Blank

